Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcosseq Structured version   Visualization version   GIF version

Theorem dmcosseq 5542
 Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)

Proof of Theorem dmcosseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 5540 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
21a1i 11 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐵)
3 ssel 3738 . . . . . . . 8 (ran 𝐵 ⊆ dom 𝐴 → (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
4 vex 3343 . . . . . . . . . . 11 𝑦 ∈ V
54elrn 5521 . . . . . . . . . 10 (𝑦 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑦)
64eldm 5476 . . . . . . . . . 10 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 𝑦𝐴𝑧)
75, 6imbi12i 339 . . . . . . . . 9 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) ↔ (∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
8 19.8a 2199 . . . . . . . . . . 11 (𝑥𝐵𝑦 → ∃𝑥 𝑥𝐵𝑦)
98imim1i 63 . . . . . . . . . 10 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
10 pm3.2 462 . . . . . . . . . . 11 (𝑥𝐵𝑦 → (𝑦𝐴𝑧 → (𝑥𝐵𝑦𝑦𝐴𝑧)))
1110eximdv 1995 . . . . . . . . . 10 (𝑥𝐵𝑦 → (∃𝑧 𝑦𝐴𝑧 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
129, 11sylcom 30 . . . . . . . . 9 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
137, 12sylbi 207 . . . . . . . 8 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
143, 13syl 17 . . . . . . 7 (ran 𝐵 ⊆ dom 𝐴 → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
1514eximdv 1995 . . . . . 6 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
16 excom 2191 . . . . . 6 (∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧))
1715, 16syl6ibr 242 . . . . 5 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)))
18 vex 3343 . . . . . . 7 𝑥 ∈ V
19 vex 3343 . . . . . . 7 𝑧 ∈ V
2018, 19opelco 5449 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2120exbii 1923 . . . . 5 (∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2217, 21syl6ibr 242 . . . 4 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵)))
2318eldm 5476 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
2418eldm2 5477 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵))
2522, 23, 243imtr4g 285 . . 3 (ran 𝐵 ⊆ dom 𝐴 → (𝑥 ∈ dom 𝐵𝑥 ∈ dom (𝐴𝐵)))
2625ssrdv 3750 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom (𝐴𝐵))
272, 26eqssd 3761 1 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ⊆ wss 3715  ⟨cop 4327   class class class wbr 4804  dom cdm 5266  ran crn 5267   ∘ ccom 5270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277 This theorem is referenced by:  dmcoeq  5543  fnco  6160  dmcoss3  34544  comptiunov2i  38518  dvsinax  40648  hoicvr  41286  fnresfnco  41730
 Copyright terms: Public domain W3C validator