MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcoass Structured version   Visualization version   GIF version

Theorem dmcoass 16917
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
dmcoass dom · ⊆ (𝐴 × 𝐴)

Proof of Theorem dmcoass
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coafval.o . . . 4 · = (compa𝐶)
2 coafval.a . . . 4 𝐴 = (Arrow‘𝐶)
3 eqid 2760 . . . 4 (comp‘𝐶) = (comp‘𝐶)
41, 2, 3coafval 16915 . . 3 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝐶)(coda𝑔))(2nd𝑓))⟩)
54dmmpt2ssx 7403 . 2 dom · 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)})
6 iunss 4713 . . 3 ( 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
7 snssi 4484 . . . 4 (𝑔𝐴 → {𝑔} ⊆ 𝐴)
8 ssrab2 3828 . . . 4 {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴
9 xpss12 5281 . . . 4 (({𝑔} ⊆ 𝐴 ∧ {𝐴 ∣ (coda) = (doma𝑔)} ⊆ 𝐴) → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
107, 8, 9sylancl 697 . . 3 (𝑔𝐴 → ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴))
116, 10mprgbir 3065 . 2 𝑔𝐴 ({𝑔} × {𝐴 ∣ (coda) = (doma𝑔)}) ⊆ (𝐴 × 𝐴)
125, 11sstri 3753 1 dom · ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  {crab 3054  wss 3715  {csn 4321  cop 4327  cotp 4329   ciun 4672   × cxp 5264  dom cdm 5266  cfv 6049  (class class class)co 6813  2nd c2nd 7332  compcco 16155  domacdoma 16871  codaccoda 16872  Arrowcarw 16873  compaccoa 16905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-ot 4330  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-arw 16878  df-coa 16907
This theorem is referenced by:  coapm  16922
  Copyright terms: Public domain W3C validator