![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmcoass | Structured version Visualization version GIF version |
Description: The domain of composition is a collection of pairs of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
coafval.o | ⊢ · = (compa‘𝐶) |
coafval.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
dmcoass | ⊢ dom · ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coafval.o | . . . 4 ⊢ · = (compa‘𝐶) | |
2 | coafval.a | . . . 4 ⊢ 𝐴 = (Arrow‘𝐶) | |
3 | eqid 2760 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | 1, 2, 3 | coafval 16915 | . . 3 ⊢ · = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ↦ 〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝐶)(coda‘𝑔))(2nd ‘𝑓))〉) |
5 | 4 | dmmpt2ssx 7403 | . 2 ⊢ dom · ⊆ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) |
6 | iunss 4713 | . . 3 ⊢ (∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) ↔ ∀𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
7 | snssi 4484 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → {𝑔} ⊆ 𝐴) | |
8 | ssrab2 3828 | . . . 4 ⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴 | |
9 | xpss12 5281 | . . . 4 ⊢ (({𝑔} ⊆ 𝐴 ∧ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)} ⊆ 𝐴) → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) | |
10 | 7, 8, 9 | sylancl 697 | . . 3 ⊢ (𝑔 ∈ 𝐴 → ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴)) |
11 | 6, 10 | mprgbir 3065 | . 2 ⊢ ∪ 𝑔 ∈ 𝐴 ({𝑔} × {ℎ ∈ 𝐴 ∣ (coda‘ℎ) = (doma‘𝑔)}) ⊆ (𝐴 × 𝐴) |
12 | 5, 11 | sstri 3753 | 1 ⊢ dom · ⊆ (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 {crab 3054 ⊆ wss 3715 {csn 4321 〈cop 4327 〈cotp 4329 ∪ ciun 4672 × cxp 5264 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 2nd c2nd 7332 compcco 16155 domacdoma 16871 codaccoda 16872 Arrowcarw 16873 compaccoa 16905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-ot 4330 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-arw 16878 df-coa 16907 |
This theorem is referenced by: coapm 16922 |
Copyright terms: Public domain | W3C validator |