![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmatsgrp | Structured version Visualization version GIF version |
Description: The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatid.0 | ⊢ 0 = (0g‘𝑅) |
dmatid.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatsgrp | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatid.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | dmatid.d | . . . . 5 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatmat 20518 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧 ∈ 𝐷 → 𝑧 ∈ 𝐵)) |
6 | 5 | ancoms 455 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑧 ∈ 𝐷 → 𝑧 ∈ 𝐵)) |
7 | 6 | ssrdv 3758 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ⊆ 𝐵) |
8 | 1, 2, 3, 4 | dmatid 20519 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
9 | 8 | ancoms 455 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r‘𝐴) ∈ 𝐷) |
10 | ne0i 4069 | . . 3 ⊢ ((1r‘𝐴) ∈ 𝐷 → 𝐷 ≠ ∅) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ≠ ∅) |
12 | 1, 2, 3, 4 | dmatsubcl 20522 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐷) |
13 | 12 | ancom1s 632 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐷) |
14 | 13 | ralrimivva 3120 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(-g‘𝐴)𝑦) ∈ 𝐷) |
15 | 1 | matring 20466 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
16 | 15 | ancoms 455 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Ring) |
17 | ringgrp 18760 | . . 3 ⊢ (𝐴 ∈ Ring → 𝐴 ∈ Grp) | |
18 | eqid 2771 | . . . 4 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
19 | 2, 18 | issubg4 17821 | . . 3 ⊢ (𝐴 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐴) ↔ (𝐷 ⊆ 𝐵 ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(-g‘𝐴)𝑦) ∈ 𝐷))) |
20 | 16, 17, 19 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝐷 ∈ (SubGrp‘𝐴) ↔ (𝐷 ⊆ 𝐵 ∧ 𝐷 ≠ ∅ ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(-g‘𝐴)𝑦) ∈ 𝐷))) |
21 | 7, 11, 14, 20 | mpbir3and 1427 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ⊆ wss 3723 ∅c0 4063 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 Basecbs 16064 0gc0g 16308 Grpcgrp 17630 -gcsg 17632 SubGrpcsubg 17796 1rcur 18709 Ringcrg 18755 Mat cmat 20430 DMat cdmat 20512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-sup 8504 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-hom 16174 df-cco 16175 df-0g 16310 df-gsum 16311 df-prds 16316 df-pws 16318 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-ghm 17866 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-subrg 18988 df-lmod 19075 df-lss 19143 df-sra 19387 df-rgmod 19388 df-dsmm 20293 df-frlm 20308 df-mamu 20407 df-mat 20431 df-dmat 20514 |
This theorem is referenced by: dmatsrng 20525 scmatsgrp1 20546 |
Copyright terms: Public domain | W3C validator |