MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatel Structured version   Visualization version   GIF version

Theorem dmatel 20522
Description: A 𝑁 x 𝑁 diagonal matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝑖,𝑀,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑉(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem dmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 dmatval.b . . . 4 𝐵 = (Base‘𝐴)
3 dmatval.0 . . . 4 0 = (0g𝑅)
4 dmatval.d . . . 4 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatval 20521 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
65eleq2d 2826 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
7 oveq 6821 . . . . . 6 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87eqeq1d 2763 . . . . 5 (𝑚 = 𝑀 → ((𝑖𝑚𝑗) = 0 ↔ (𝑖𝑀𝑗) = 0 ))
98imbi2d 329 . . . 4 (𝑚 = 𝑀 → ((𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1092ralbidv 3128 . . 3 (𝑚 = 𝑀 → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 ) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
1110elrab 3505 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )))
126, 11syl6bb 276 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝐷 ↔ (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wne 2933  wral 3051  {crab 3055  cfv 6050  (class class class)co 6815  Fincfn 8124  Basecbs 16080  0gc0g 16323   Mat cmat 20436   DMat cdmat 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-iota 6013  df-fun 6052  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-dmat 20519
This theorem is referenced by:  dmatmat  20523  dmatid  20524  dmatelnd  20525  dmatsubcl  20527  dmatscmcl  20532
  Copyright terms: Public domain W3C validator