MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatcrng Structured version   Visualization version   GIF version

Theorem dmatcrng 20356
Description: The subring of diagonal matrices (over a commutative ring) is a commutative ring . (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
dmatcrng.c 𝐶 = (𝐴s 𝐷)
Assertion
Ref Expression
dmatcrng ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)

Proof of Theorem dmatcrng
Dummy variables 𝑥 𝑦 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 18604 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
4 dmatid.0 . . . . 5 0 = (0g𝑅)
5 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
62, 3, 4, 5dmatsrng 20355 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
71, 6sylan 487 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴))
8 dmatcrng.c . . . 4 𝐶 = (𝐴s 𝐷)
98subrgring 18831 . . 3 (𝐷 ∈ (SubRing‘𝐴) → 𝐶 ∈ Ring)
107, 9syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ Ring)
11 simp1lr 1145 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
12 eqid 2651 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2651 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
14 simp2 1082 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
15 simp3 1083 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
162, 13, 4, 5dmatmat 20348 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑥𝐷𝑥 ∈ (Base‘𝐴)))
1716imp 444 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐷) → 𝑥 ∈ (Base‘𝐴))
1817adantrr 753 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑥 ∈ (Base‘𝐴))
19183ad2ant1 1102 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑥 ∈ (Base‘𝐴))
202, 12, 13, 14, 15, 19matecld 20280 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑥𝑏) ∈ (Base‘𝑅))
212, 13, 4, 5dmatmat 20348 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦𝐷𝑦 ∈ (Base‘𝐴)))
2221imp 444 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐷) → 𝑦 ∈ (Base‘𝐴))
2322adantrl 752 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → 𝑦 ∈ (Base‘𝐴))
24233ad2ant1 1102 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → 𝑦 ∈ (Base‘𝐴))
252, 12, 13, 14, 15, 24matecld 20280 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → (𝑎𝑦𝑏) ∈ (Base‘𝑅))
26 eqid 2651 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2712, 26crngcom 18608 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑎𝑥𝑏) ∈ (Base‘𝑅) ∧ (𝑎𝑦𝑏) ∈ (Base‘𝑅)) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2811, 20, 25, 27syl3anc 1366 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)) = ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)))
2928ifeq1d 4137 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) ∧ 𝑎𝑁𝑏𝑁) → if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 ) = if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 ))
3029mpt2eq3dva 6761 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
311anim2i 592 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
322, 3, 4, 5dmatmul 20351 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
3331, 32sylan 487 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑥𝑏)(.r𝑅)(𝑎𝑦𝑏)), 0 )))
34 pm3.22 464 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → (𝑦𝐷𝑥𝐷))
352, 3, 4, 5dmatmul 20351 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐷𝑥𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3631, 34, 35syl2an 493 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑦(.r𝐴)𝑥) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, ((𝑎𝑦𝑏)(.r𝑅)(𝑎𝑥𝑏)), 0 )))
3730, 33, 363eqtr4d 2695 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3837ralrimivva 3000 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
3938ancoms 468 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥))
408subrgbas 18837 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → 𝐷 = (Base‘𝐶))
4140eqcomd 2657 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (Base‘𝐶) = 𝐷)
42 eqid 2651 . . . . . . . . . 10 (.r𝐴) = (.r𝐴)
438, 42ressmulr 16053 . . . . . . . . 9 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝐶))
4443eqcomd 2657 . . . . . . . 8 (𝐷 ∈ (SubRing‘𝐴) → (.r𝐶) = (.r𝐴))
4544oveqd 6707 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑥(.r𝐶)𝑦) = (𝑥(.r𝐴)𝑦))
4644oveqd 6707 . . . . . . 7 (𝐷 ∈ (SubRing‘𝐴) → (𝑦(.r𝐶)𝑥) = (𝑦(.r𝐴)𝑥))
4745, 46eqeq12d 2666 . . . . . 6 (𝐷 ∈ (SubRing‘𝐴) → ((𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4841, 47raleqbidv 3182 . . . . 5 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
4941, 48raleqbidv 3182 . . . 4 (𝐷 ∈ (SubRing‘𝐴) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
507, 49syl 17 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥) ↔ ∀𝑥𝐷𝑦𝐷 (𝑥(.r𝐴)𝑦) = (𝑦(.r𝐴)𝑥)))
5139, 50mpbird 247 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
52 eqid 2651 . . 3 (Base‘𝐶) = (Base‘𝐶)
53 eqid 2651 . . 3 (.r𝐶) = (.r𝐶)
5452, 53iscrng2 18609 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
5510, 51, 54sylanbrc 699 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  ifcif 4119  cfv 5926  (class class class)co 6690  cmpt2 6692  Fincfn 7997  Basecbs 15904  s cress 15905  .rcmulr 15989  0gc0g 16147  Ringcrg 18593  CRingccrg 18594  SubRingcsubrg 18824   Mat cmat 20261   DMat cdmat 20342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-dmat 20344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator