![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4063 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1880 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3344 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5478 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 312 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4076 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∃wex 1853 ∈ wcel 2140 ∅c0 4059 〈cop 4328 dom cdm 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-dm 5277 |
This theorem is referenced by: dmxpid 5501 rn0 5533 dmxpss 5724 fn0 6173 f0dom0 6251 f10d 6333 f1o00 6334 0fv 6390 1stval 7337 bropopvvv 7425 bropfvvvv 7427 supp0 7470 tz7.44lem1 7672 tz7.44-2 7674 tz7.44-3 7675 oicl 8602 oif 8603 swrd0 13655 dmtrclfv 13979 strlemor0OLD 16191 symgsssg 18108 symgfisg 18109 psgnunilem5 18135 dvbsss 23886 perfdvf 23887 uhgr0e 26187 uhgr0 26189 usgr0 26356 egrsubgr 26390 0grsubgr 26391 vtxdg0e 26602 eupth0 27388 dmadjrnb 29096 f1ocnt 29890 mbfmcst 30652 0rrv 30844 matunitlindf 33739 ismgmOLD 33981 conrel2d 38477 neicvgbex 38931 iblempty 40703 |
Copyright terms: Public domain | W3C validator |