![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dlatjmdi | Structured version Visualization version GIF version |
Description: In a distributive lattice, joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
dlatjmdi.b | ⊢ 𝐵 = (Base‘𝐾) |
dlatjmdi.j | ⊢ ∨ = (join‘𝐾) |
dlatjmdi.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
dlatjmdi | ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
2 | 1 | odudlatb 17417 | . . 3 ⊢ (𝐾 ∈ DLat → (𝐾 ∈ DLat ↔ (ODual‘𝐾) ∈ DLat)) |
3 | 2 | ibi 256 | . 2 ⊢ (𝐾 ∈ DLat → (ODual‘𝐾) ∈ DLat) |
4 | dlatjmdi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 1, 4 | odubas 17354 | . . 3 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
6 | dlatjmdi.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
7 | 1, 6 | odujoin 17363 | . . 3 ⊢ ∧ = (join‘(ODual‘𝐾)) |
8 | dlatjmdi.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | 1, 8 | odumeet 17361 | . . 3 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
10 | 5, 7, 9 | dlatmjdi 17415 | . 2 ⊢ (((ODual‘𝐾) ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) |
11 | 3, 10 | sylan 489 | 1 ⊢ ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 joincjn 17165 meetcmee 17166 ODualcodu 17349 DLatcdlat 17412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-dec 11706 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ple 16183 df-preset 17149 df-poset 17167 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-lat 17267 df-odu 17350 df-dlat 17413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |