![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djussxp | Structured version Visualization version GIF version |
Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss 4695 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
2 | snssi 4474 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
3 | ssv 3774 | . . 3 ⊢ 𝐵 ⊆ V | |
4 | xpss12 5264 | . . 3 ⊢ (({𝑥} ⊆ 𝐴 ∧ 𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
5 | 2, 3, 4 | sylancl 574 | . 2 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) |
6 | 1, 5 | mprgbir 3076 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 {csn 4316 ∪ ciun 4654 × cxp 5247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-sn 4317 df-iun 4656 df-opab 4847 df-xp 5255 |
This theorem is referenced by: djudisj 5702 iundom2g 9564 |
Copyright terms: Public domain | W3C validator |