![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > djhljjN | Structured version Visualization version GIF version |
Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
djhlj.b | ⊢ 𝐵 = (Base‘𝐾) |
djhlj.k | ⊢ ∨ = (join‘𝐾) |
djhlj.h | ⊢ 𝐻 = (LHyp‘𝐾) |
djhlj.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
djhlj.j | ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) |
djhljj.w | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
djhljj.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
djhljj.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
djhljjN | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djhljj.w | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | djhljj.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | djhljj.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | djhlj.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | djhlj.k | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
6 | djhlj.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | djhlj.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
8 | djhlj.j | . . . . 5 ⊢ 𝐽 = ((joinH‘𝐾)‘𝑊) | |
9 | 4, 5, 6, 7, 8 | djhlj 37211 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
10 | 1, 2, 3, 9 | syl12anc 1474 | . . 3 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
11 | 4, 6, 7 | dihcl 37080 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ ran 𝐼) |
12 | 1, 2, 11 | syl2anc 573 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑋) ∈ ran 𝐼) |
13 | eqid 2771 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
14 | eqid 2771 | . . . . . . 7 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
15 | 6, 13, 7, 14 | dihrnss 37088 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ ran 𝐼) → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
16 | 1, 12, 15 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
17 | 4, 6, 7 | dihcl 37080 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ ran 𝐼) |
18 | 1, 3, 17 | syl2anc 573 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝑌) ∈ ran 𝐼) |
19 | 6, 13, 7, 14 | dihrnss 37088 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑌) ∈ ran 𝐼) → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
20 | 1, 18, 19 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
21 | 6, 7, 13, 14, 8 | djhcl 37210 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ (𝐼‘𝑌) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))) → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
22 | 1, 16, 20, 21 | syl12anc 1474 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) |
23 | 6, 7 | dihcnvid2 37083 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
24 | 1, 22, 23 | syl2anc 573 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) = ((𝐼‘𝑋)𝐽(𝐼‘𝑌))) |
25 | 10, 24 | eqtr4d 2808 | . 2 ⊢ (𝜑 → (𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
26 | 1 | simpld 482 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
27 | 26 | hllatd 35173 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
28 | 4, 5 | latjcl 17259 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
29 | 27, 2, 3, 28 | syl3anc 1476 | . . 3 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
30 | 4, 6, 7 | dihcnvcl 37081 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐼‘𝑋)𝐽(𝐼‘𝑌)) ∈ ran 𝐼) → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
31 | 1, 22, 30 | syl2anc 573 | . . 3 ⊢ (𝜑 → (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) |
32 | 4, 6, 7 | dih11 37075 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))) ∈ 𝐵) → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
33 | 1, 29, 31, 32 | syl3anc 1476 | . 2 ⊢ (𝜑 → ((𝐼‘(𝑋 ∨ 𝑌)) = (𝐼‘(◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) ↔ (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌))))) |
34 | 25, 33 | mpbid 222 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (◡𝐼‘((𝐼‘𝑋)𝐽(𝐼‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ◡ccnv 5249 ran crn 5251 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 joincjn 17152 Latclat 17253 HLchlt 35159 LHypclh 35793 DVecHcdvh 36888 DIsoHcdih 37038 joinHcdjh 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-undef 7555 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-0g 16310 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35307 df-lplanes 35308 df-lvols 35309 df-lines 35310 df-psubsp 35312 df-pmap 35313 df-padd 35605 df-lhyp 35797 df-laut 35798 df-ldil 35913 df-ltrn 35914 df-trl 35969 df-tendo 36565 df-edring 36567 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 df-djh 37205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |