![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divmuldivi | Structured version Visualization version GIF version |
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divmulz.3 | ⊢ 𝐶 ∈ ℂ |
divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divmuldivi | ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | divmulz.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
3 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
5 | 3, 4 | pm3.2i 471 | . 2 ⊢ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) |
6 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
7 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
8 | 6, 7 | pm3.2i 471 | . 2 ⊢ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) |
9 | divmuldiv 10925 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))) | |
10 | 1, 2, 5, 8, 9 | mp4an 708 | 1 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1629 ∈ wcel 2143 ≠ wne 2941 (class class class)co 6791 ℂcc 10134 0cc0 10136 · cmul 10141 / cdiv 10884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-mpt 4861 df-id 5156 df-po 5169 df-so 5170 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 |
This theorem is referenced by: divmul13i 10986 8th4div3 11452 halfpm6th 11453 sqrecii 13153 sqdivi 13155 bpoly3 15000 efival 15093 ef01bndlem 15125 sincos4thpi 24492 sincos6thpi 24494 bposlem8 25243 bposlem9 25244 quad3 31903 wallispi2lem1 40806 |
Copyright terms: Public domain | W3C validator |