![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divmul13i | Structured version Visualization version GIF version |
Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divmulz.3 | ⊢ 𝐶 ∈ ℂ |
divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
Ref | Expression |
---|---|
divmul13i | ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divmulz.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
2 | divclz.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | mulcomi 10258 | . . 3 ⊢ (𝐶 · 𝐴) = (𝐴 · 𝐶) |
4 | 3 | oveq1i 6824 | . 2 ⊢ ((𝐶 · 𝐴) / (𝐵 · 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
5 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
6 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
7 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
8 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
9 | 1, 5, 2, 6, 7, 8 | divmuldivi 10997 | . 2 ⊢ ((𝐶 / 𝐵) · (𝐴 / 𝐷)) = ((𝐶 · 𝐴) / (𝐵 · 𝐷)) |
10 | 2, 5, 1, 6, 7, 8 | divmuldivi 10997 | . 2 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
11 | 4, 9, 10 | 3eqtr4ri 2793 | 1 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ≠ wne 2932 (class class class)co 6814 ℂcc 10146 0cc0 10148 · cmul 10153 / cdiv 10896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |