![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > divge1b | Structured version Visualization version GIF version |
Description: The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020.) |
Ref | Expression |
---|---|
divge1b | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12044 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | 1 | mulid2d 10260 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴) |
3 | 2 | eqcomd 2777 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 = (1 · 𝐴)) |
4 | 3 | adantr 466 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐴 = (1 · 𝐴)) |
5 | 4 | breq1d 4796 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (1 · 𝐴) ≤ 𝐵)) |
6 | 1red 10257 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ) | |
7 | simpr 471 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
8 | rpregt0 12049 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
9 | 8 | adantr 466 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
10 | lemuldiv 11105 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((1 · 𝐴) ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) | |
11 | 6, 7, 9, 10 | syl3anc 1476 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → ((1 · 𝐴) ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) |
12 | 5, 11 | bitrd 268 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 0cc0 10138 1c1 10139 · cmul 10143 < clt 10276 ≤ cle 10277 / cdiv 10886 ℝ+crp 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-rp 12036 |
This theorem is referenced by: fldivexpfllog2 42887 |
Copyright terms: Public domain | W3C validator |