![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divge0 | Structured version Visualization version GIF version |
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.) |
Ref | Expression |
---|---|
divge0 | ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0div 11074 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) | |
2 | 1 | biimpd 219 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))) |
3 | 2 | 3exp 1112 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐵 → (0 ≤ 𝐴 → 0 ≤ (𝐴 / 𝐵))))) |
4 | 3 | com34 91 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 ≤ 𝐴 → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
5 | 4 | com23 86 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 → (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ (𝐴 / 𝐵))))) |
6 | 5 | imp43 622 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2131 class class class wbr 4796 (class class class)co 6805 ℝcr 10119 0cc0 10120 < clt 10258 ≤ cle 10259 / cdiv 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-po 5179 df-so 5180 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 |
This theorem is referenced by: mulge0b 11077 ledivp1 11109 divge0i 11117 divge0d 12097 divelunit 12499 adddivflid 12805 fldiv4p1lem1div2 12822 fldiv 12845 modid 12881 modmuladdnn0 12900 expnbnd 13179 sqrtdiv 14197 sqreulem 14290 iseralt 14606 efcllem 14999 ege2le3 15011 flodddiv4 15331 hashgcdlem 15687 iserodd 15734 fldivp1 15795 4sqlem14 15856 odmodnn0 18151 prmirredlem 20035 icopnfcnv 22934 lebnumii 22958 nmoleub2lem3 23107 ncvs1 23149 minveclem4 23395 mbfi1fseqlem1 23673 mbfi1fseqlem5 23677 radcnvlem1 24358 cxpaddle 24684 leibpilem1 24858 log2tlbnd 24863 birthdaylem3 24871 jensenlem2 24905 amgm 24908 basellem3 25000 ppiub 25120 logfac2 25133 gausslemma2dlem0d 25275 chto1ub 25356 vmadivsum 25362 rpvmasumlem 25367 dchrvmasumlem2 25378 dchrvmasumiflem1 25381 dchrisum0fno1 25391 dchrisum0re 25393 mulog2sumlem2 25415 selberg2lem 25430 pntrmax 25444 pntrsumo1 25445 pntpbnd1 25466 ostth2lem2 25514 axpaschlem 26011 axcontlem2 26036 nv1 27831 siii 28009 minvecolem4 28037 norm1 28407 strlem1 29410 unitdivcld 30248 cvmliftlem2 31567 cvmliftlem10 31575 cvmliftlem13 31577 snmlff 31610 poimirlem29 33743 poimirlem30 33744 poimirlem31 33745 poimirlem32 33746 pellexlem1 37887 pellexlem6 37892 jm2.22 38056 jm2.23 38057 stoweidlem36 40748 stoweidlem38 40750 nn0eo 42824 dignn0flhalf 42914 |
Copyright terms: Public domain | W3C validator |