Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprm0 Structured version   Visualization version   GIF version

Theorem divgcdcoprm0 15426
 Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)

Proof of Theorem divgcdcoprm0
Dummy variables 𝑎 𝑏 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 15272 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
213adant3 1101 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
3 gcdcl 15275 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
43nn0zd 11518 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
5 simpl 472 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
64, 5jca 553 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
763adant3 1101 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
8 divides 15029 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
97, 8syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
10 simpr 476 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
114, 10jca 553 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12113adant3 1101 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 divides 15029 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
1412, 13syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
159, 14anbi12d 747 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵)))
16 bezout 15307 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
17163adant3 1101 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
18 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = (𝐴 · 𝑚))
19 oveq1 6697 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = (𝐵 · 𝑛))
2018, 19oveqan12rd 6710 . . . . . . . . . . . . . . . . . . 19 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
2120eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛))))
2221bicomd 213 . . . . . . . . . . . . . . . . 17 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛))))
23 simpl 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
2423zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
263nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
27263adant3 1101 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
2827ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
29 simpl 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
3029zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
3130ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℂ)
3225, 28, 31mul32d 10284 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)))
33 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
3433zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
36 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3736zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
3837ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℂ)
3935, 28, 38mul32d 10284 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))
4032, 39oveq12d 6708 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))))
4140eqeq2d 2661 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
4223adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
4329ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℤ)
4442, 43zmulcld 11526 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℤ)
4543adant3 1101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
4645ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
4744, 46zmulcld 11526 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℤ)
4833adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4936ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℤ)
5048, 49zmulcld 11526 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℤ)
5133adant3 1101 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
5251ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5352nn0zd 11518 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
5450, 53zmulcld 11526 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℤ)
5547, 54zaddcld 11524 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℤ)
5655zcnd 11521 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ)
57 gcd2n0cl 15278 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
58 nnrp 11880 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ+)
5958rpcnne0d 11919 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6057, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6160ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
62 div11 10751 . . . . . . . . . . . . . . . . . . 19 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
6328, 56, 61, 62syl3anc 1366 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
64 divid 10752 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6561, 64syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6647zcnd 11521 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ)
6754zcnd 11521 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ)
68 divdir 10748 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
6966, 67, 61, 68syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
7044zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℂ)
7151nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
7271ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
7357nnne0d 11103 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
7473ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ≠ 0)
7570, 72, 74divcan4d 10845 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑎 · 𝑚))
7650zcnd 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℂ)
7776, 28, 74divcan4d 10845 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑏 · 𝑛))
7875, 77oveq12d 6708 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
7969, 78eqtrd 2685 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
8065, 79eqeq12d 2666 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8141, 63, 803bitr2d 296 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8222, 81sylan9bbr 737 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
83 eqcom 2658 . . . . . . . . . . . . . . . . . 18 (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) ↔ ((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1)
84 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
8584anim1i 591 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)))
8685ancomd 466 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
87 bezoutr1 15329 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8988adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
9083, 89syl5bi 232 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → (𝑎 gcd 𝑏) = 1))
91 simpll1 1120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℤ)
9291zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℂ)
93 divmul3 10728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
9492, 25, 61, 93syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
95 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎)
96 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
9794, 95, 963bitr4g 303 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
9897biimprd 238 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵))))
9998a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵)))))
10099imp32 448 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑎 = (𝐴 / (𝐴 gcd 𝐵)))
101 simp2 1082 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
102101zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
103102ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ ℂ)
104 divmul3 10728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
105103, 35, 61, 104syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
106 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)
107 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝐵 = (𝑏 · (𝐴 gcd 𝐵)))
108105, 106, 1073bitr4g 303 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
109108biimprd 238 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝑏 = (𝐵 / (𝐴 gcd 𝐵))))
110109a1dd 50 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑏 = (𝐵 / (𝐴 gcd 𝐵)))))
111110imp32 448 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑏 = (𝐵 / (𝐴 gcd 𝐵)))
112100, 111oveq12d 6708 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (𝑎 gcd 𝑏) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
113112eqeq1d 2653 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝑎 gcd 𝑏) = 1 ↔ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11490, 113sylibd 229 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11582, 114sylbid 230 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
116115exp32 630 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
117116com34 91 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
118117com23 86 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
119118ex 449 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
120119com23 86 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
121120rexlimdvva 3067 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
12217, 121mpd 15 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
123122impl 649 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
124123rexlimdva 3060 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
125124com23 86 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
126125rexlimdva 3060 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
127126impd 446 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
12815, 127sylbid 230 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
1292, 128mpd 15 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942   class class class wbr 4685  (class class class)co 6690  ℂcc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   / cdiv 10722  ℕcn 11058  ℕ0cn0 11330  ℤcz 11415   ∥ cdvds 15027   gcd cgcd 15263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264 This theorem is referenced by:  divgcdcoprmex  15427
 Copyright terms: Public domain W3C validator