Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divcan8d Structured version   Visualization version   GIF version

Theorem divcan8d 40043
Description: A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
divcan8d.a (𝜑𝐴 ∈ ℂ)
divcan8d.b (𝜑𝐵 ∈ ℂ)
divcan8d.a0 (𝜑𝐴 ≠ 0)
divcan8d.b0 (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
divcan8d (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴))

Proof of Theorem divcan8d
StepHypRef Expression
1 divcan8d.b . . . 4 (𝜑𝐵 ∈ ℂ)
2 divcan8d.a . . . . 5 (𝜑𝐴 ∈ ℂ)
32, 1mulcld 10272 . . . 4 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
4 divcan8d.a0 . . . . 5 (𝜑𝐴 ≠ 0)
5 divcan8d.b0 . . . . 5 (𝜑𝐵 ≠ 0)
62, 1, 4, 5mulne0d 10891 . . . 4 (𝜑 → (𝐴 · 𝐵) ≠ 0)
72, 1, 6mulne0bbd 10895 . . . 4 (𝜑𝐵 ≠ 0)
81, 3, 1, 6, 7divcan7d 11041 . . 3 (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (𝐵 / (𝐴 · 𝐵)))
98eqcomd 2766 . 2 (𝜑 → (𝐵 / (𝐴 · 𝐵)) = ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)))
101, 5dividd 11011 . . 3 (𝜑 → (𝐵 / 𝐵) = 1)
112, 1, 5divcan4d 11019 . . 3 (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
1210, 11oveq12d 6832 . 2 (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (1 / 𝐴))
13 eqidd 2761 . 2 (𝜑 → (1 / 𝐴) = (1 / 𝐴))
149, 12, 133eqtrd 2798 1 (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wne 2932  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   · cmul 10153   / cdiv 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897
This theorem is referenced by:  dvnxpaek  40678
  Copyright terms: Public domain W3C validator