MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem9 Structured version   Visualization version   GIF version

Theorem divalglem9 15171
Description: Lemma for divalg 15173. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
divalglem9.5 𝑅 = inf(𝑆, ℝ, < )
Assertion
Ref Expression
divalglem9 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Distinct variable groups:   𝐷,𝑟,𝑥   𝑁,𝑟,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑟)   𝑆(𝑟)

Proof of Theorem divalglem9
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divalglem9.5 . . . 4 𝑅 = inf(𝑆, ℝ, < )
2 divalglem8.1 . . . . 5 𝑁 ∈ ℤ
3 divalglem8.2 . . . . 5 𝐷 ∈ ℤ
4 divalglem8.3 . . . . 5 𝐷 ≠ 0
5 divalglem8.4 . . . . 5 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
62, 3, 4, 5divalglem2 15165 . . . 4 inf(𝑆, ℝ, < ) ∈ 𝑆
71, 6eqeltri 2726 . . 3 𝑅𝑆
82, 3, 4, 5, 1divalglem5 15167 . . . 4 (0 ≤ 𝑅𝑅 < (abs‘𝐷))
98simpri 477 . . 3 𝑅 < (abs‘𝐷)
10 breq1 4688 . . . 4 (𝑥 = 𝑅 → (𝑥 < (abs‘𝐷) ↔ 𝑅 < (abs‘𝐷)))
1110rspcev 3340 . . 3 ((𝑅𝑆𝑅 < (abs‘𝐷)) → ∃𝑥𝑆 𝑥 < (abs‘𝐷))
127, 9, 11mp2an 708 . 2 𝑥𝑆 𝑥 < (abs‘𝐷)
13 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
1413breq2d 4697 . . . . . . . . . . . . . 14 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
1514, 5elrab2 3399 . . . . . . . . . . . . 13 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0𝐷 ∥ (𝑁𝑥)))
1615simplbi 475 . . . . . . . . . . . 12 (𝑥𝑆𝑥 ∈ ℕ0)
1716nn0zd 11518 . . . . . . . . . . 11 (𝑥𝑆𝑥 ∈ ℤ)
18 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑟 = 𝑦 → (𝑁𝑟) = (𝑁𝑦))
1918breq2d 4697 . . . . . . . . . . . . . 14 (𝑟 = 𝑦 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑦)))
2019, 5elrab2 3399 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ ℕ0𝐷 ∥ (𝑁𝑦)))
2120simplbi 475 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℕ0)
2221nn0zd 11518 . . . . . . . . . . 11 (𝑦𝑆𝑦 ∈ ℤ)
23 zsubcl 11457 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥) ∈ ℤ)
242, 23mpan 706 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑁𝑥) ∈ ℤ)
25 zsubcl 11457 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑁𝑦) ∈ ℤ)
262, 25mpan 706 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → (𝑁𝑦) ∈ ℤ)
2724, 26anim12i 589 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2817, 22, 27syl2an 493 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ))
2915simprbi 479 . . . . . . . . . . 11 (𝑥𝑆𝐷 ∥ (𝑁𝑥))
3020simprbi 479 . . . . . . . . . . 11 (𝑦𝑆𝐷 ∥ (𝑁𝑦))
3129, 30anim12i 589 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)))
32 dvds2sub 15063 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ (𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
333, 32mp3an1 1451 . . . . . . . . . 10 (((𝑁𝑥) ∈ ℤ ∧ (𝑁𝑦) ∈ ℤ) → ((𝐷 ∥ (𝑁𝑥) ∧ 𝐷 ∥ (𝑁𝑦)) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦))))
3428, 31, 33sylc 65 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)))
35 zcn 11420 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 11420 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
372zrei 11421 . . . . . . . . . . . . . . . . 17 𝑁 ∈ ℝ
3837recni 10090 . . . . . . . . . . . . . . . 16 𝑁 ∈ ℂ
3938subidi 10390 . . . . . . . . . . . . . . 15 (𝑁𝑁) = 0
4039oveq1i 6700 . . . . . . . . . . . . . 14 ((𝑁𝑁) − (𝑥𝑦)) = (0 − (𝑥𝑦))
41 0cn 10070 . . . . . . . . . . . . . . 15 0 ∈ ℂ
42 subsub2 10347 . . . . . . . . . . . . . . 15 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4341, 42mp3an1 1451 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 − (𝑥𝑦)) = (0 + (𝑦𝑥)))
4440, 43syl5eq 2697 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = (0 + (𝑦𝑥)))
45 sub4 10364 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
4638, 38, 45mpanl12 718 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑁) − (𝑥𝑦)) = ((𝑁𝑥) − (𝑁𝑦)))
47 subcl 10318 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4847ancoms 468 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦𝑥) ∈ ℂ)
4948addid2d 10275 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 + (𝑦𝑥)) = (𝑦𝑥))
5044, 46, 493eqtr3d 2693 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5135, 36, 50syl2an 493 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5217, 22, 51syl2an 493 . . . . . . . . . 10 ((𝑥𝑆𝑦𝑆) → ((𝑁𝑥) − (𝑁𝑦)) = (𝑦𝑥))
5352breq2d 4697 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ ((𝑁𝑥) − (𝑁𝑦)) ↔ 𝐷 ∥ (𝑦𝑥)))
5434, 53mpbid 222 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → 𝐷 ∥ (𝑦𝑥))
55 zsubcl 11457 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
5655ancoms 468 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦𝑥) ∈ ℤ)
57 absdvdsb 15047 . . . . . . . . . 10 ((𝐷 ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
583, 56, 57sylancr 696 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
5917, 22, 58syl2an 493 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝐷 ∥ (𝑦𝑥) ↔ (abs‘𝐷) ∥ (𝑦𝑥)))
6054, 59mpbid 222 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → (abs‘𝐷) ∥ (𝑦𝑥))
61 nnabscl 14109 . . . . . . . . . . 11 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (abs‘𝐷) ∈ ℕ)
623, 4, 61mp2an 708 . . . . . . . . . 10 (abs‘𝐷) ∈ ℕ
6362nnzi 11439 . . . . . . . . 9 (abs‘𝐷) ∈ ℤ
64 divides 15029 . . . . . . . . 9 (((abs‘𝐷) ∈ ℤ ∧ (𝑦𝑥) ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6563, 56, 64sylancr 696 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6617, 22, 65syl2an 493 . . . . . . 7 ((𝑥𝑆𝑦𝑆) → ((abs‘𝐷) ∥ (𝑦𝑥) ↔ ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥)))
6760, 66mpbid 222 . . . . . 6 ((𝑥𝑆𝑦𝑆) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
6867adantr 480 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → ∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥))
692, 3, 4, 5divalglem8 15170 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (𝑘 ∈ ℤ → ((𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦)))
7069rexlimdv 3059 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → (∃𝑘 ∈ ℤ (𝑘 · (abs‘𝐷)) = (𝑦𝑥) → 𝑥 = 𝑦))
7168, 70mpd 15 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷))) → 𝑥 = 𝑦)
7271ex 449 . . 3 ((𝑥𝑆𝑦𝑆) → ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦))
7372rgen2a 3006 . 2 𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)
74 breq1 4688 . . 3 (𝑥 = 𝑦 → (𝑥 < (abs‘𝐷) ↔ 𝑦 < (abs‘𝐷)))
7574reu4 3433 . 2 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ (∃𝑥𝑆 𝑥 < (abs‘𝐷) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥 < (abs‘𝐷) ∧ 𝑦 < (abs‘𝐷)) → 𝑥 = 𝑦)))
7612, 73, 75mpbir2an 975 1 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ∃!wreu 2943  {crab 2945   class class class wbr 4685  cfv 5926  (class class class)co 6690  infcinf 8388  cc 9972  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  abscabs 14018  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028
This theorem is referenced by:  divalglem10  15172
  Copyright terms: Public domain W3C validator