![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgswap | Structured version Visualization version GIF version |
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgcl.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
ditgcl.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
ditgcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) |
ditgcl.b | ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) |
ditgcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) |
ditgcl.i | ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) |
Ref | Expression |
---|---|
ditgswap | ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgcl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑋[,]𝑌)) | |
2 | ditgcl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
3 | ditgcl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | elicc2 12442 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) | |
5 | 2, 3, 4 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (𝑋[,]𝑌) ↔ (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌))) |
6 | 1, 5 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝑋 ≤ 𝐴 ∧ 𝐴 ≤ 𝑌)) |
7 | 6 | simp1d 1135 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | ditgcl.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋[,]𝑌)) | |
9 | elicc2 12442 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) | |
10 | 2, 3, 9 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝑋[,]𝑌) ↔ (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌))) |
11 | 8, 10 | mpbid 222 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ℝ ∧ 𝑋 ≤ 𝐵 ∧ 𝐵 ≤ 𝑌)) |
12 | 11 | simp1d 1135 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
13 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
14 | 7 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
15 | 12 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
16 | 13, 14, 15 | ditgneg 23840 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
17 | 13 | ditgpos 23839 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
18 | 17 | negeqd 10476 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐴(,)𝐵)𝐶 d𝑥) |
19 | 16, 18 | eqtr4d 2807 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
20 | 2 | rexrd 10290 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
21 | 11 | simp2d 1136 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
22 | iooss1 12414 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ ℝ* ∧ 𝑋 ≤ 𝐵) → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) | |
23 | 20, 21, 22 | syl2anc 565 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝐴)) |
24 | 3 | rexrd 10290 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ ℝ*) |
25 | 6 | simp3d 1137 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ≤ 𝑌) |
26 | iooss2 12415 | . . . . . . . . . 10 ⊢ ((𝑌 ∈ ℝ* ∧ 𝐴 ≤ 𝑌) → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) | |
27 | 24, 25, 26 | syl2anc 565 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋(,)𝐴) ⊆ (𝑋(,)𝑌)) |
28 | 23, 27 | sstrd 3760 | . . . . . . . 8 ⊢ (𝜑 → (𝐵(,)𝐴) ⊆ (𝑋(,)𝑌)) |
29 | 28 | sselda 3750 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝑥 ∈ (𝑋(,)𝑌)) |
30 | ditgcl.i | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1) | |
31 | iblmbf 23753 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) | |
32 | 30, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐶) ∈ MblFn) |
33 | ditgcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ 𝑉) | |
34 | 32, 33 | mbfmptcl 23623 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℂ) |
35 | 29, 34 | syldan 571 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵(,)𝐴)) → 𝐶 ∈ ℂ) |
36 | ioombl 23552 | . . . . . . . 8 ⊢ (𝐵(,)𝐴) ∈ dom vol | |
37 | 36 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐵(,)𝐴) ∈ dom vol) |
38 | 28, 37, 33, 30 | iblss 23790 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐵(,)𝐴) ↦ 𝐶) ∈ 𝐿1) |
39 | 35, 38 | itgcl 23769 | . . . . 5 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
40 | 39 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ∫(𝐵(,)𝐴)𝐶 d𝑥 ∈ ℂ) |
41 | 40 | negnegd 10584 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → --∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
42 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
43 | 12 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ) |
44 | 7 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ) |
45 | 42, 43, 44 | ditgneg 23840 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐶 d𝑥) |
46 | 45 | negeqd 10476 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → -⨜[𝐴 → 𝐵]𝐶 d𝑥 = --∫(𝐵(,)𝐴)𝐶 d𝑥) |
47 | 42 | ditgpos 23839 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐶 d𝑥) |
48 | 41, 46, 47 | 3eqtr4rd 2815 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
49 | 7, 12, 19, 48 | lecasei 10344 | 1 ⊢ (𝜑 → ⨜[𝐵 → 𝐴]𝐶 d𝑥 = -⨜[𝐴 → 𝐵]𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 ↦ cmpt 4861 dom cdm 5249 (class class class)co 6792 ℂcc 10135 ℝcr 10136 ℝ*cxr 10274 ≤ cle 10276 -cneg 10468 (,)cioo 12379 [,]cicc 12382 volcvol 23450 MblFncmbf 23601 𝐿1cibl 23604 ∫citg 23605 ⨜cdit 23829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-disj 4753 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-ofr 7044 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-xadd 12151 df-ioo 12383 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-rlim 14427 df-sum 14624 df-xmet 19953 df-met 19954 df-ovol 23451 df-vol 23452 df-mbf 23606 df-itg1 23607 df-itg2 23608 df-ibl 23609 df-itg 23610 df-0p 23656 df-ditg 23830 |
This theorem is referenced by: ditgsplit 23844 ftc2ditg 24028 |
Copyright terms: Public domain | W3C validator |