![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ditgpos | Structured version Visualization version GIF version |
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
ditgpos.1 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
ditgpos | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ditg 23831 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
2 | ditgpos.1 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
3 | 2 | iftrued 4234 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
4 | 1, 3 | syl5eq 2817 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐶 d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ifcif 4226 class class class wbr 4787 (class class class)co 6796 ≤ cle 10281 -cneg 10473 (,)cioo 12380 ∫citg 23606 ⨜cdit 23830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-if 4227 df-ditg 23831 |
This theorem is referenced by: ditgcl 23842 ditgswap 23843 ditgsplitlem 23844 ftc2ditglem 24028 itgsubstlem 24031 itgsubst 24032 ditgeqiooicc 40690 itgiccshift 40710 itgperiod 40711 fourierdlem82 40919 |
Copyright terms: Public domain | W3C validator |