![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > distop | Structured version Visualization version GIF version |
Description: The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
distop | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4490 | . . . . . 6 ⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ ∪ 𝒫 𝐴) | |
2 | unipw 4948 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 1, 2 | syl6sseq 3684 | . . . . 5 ⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ 𝐴) |
4 | vuniex 6996 | . . . . . 6 ⊢ ∪ 𝑥 ∈ V | |
5 | 4 | elpw 4197 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴) |
6 | 3, 5 | sylibr 224 | . . . 4 ⊢ (𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) |
7 | 6 | ax-gen 1762 | . . 3 ⊢ ∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) |
8 | 7 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴)) |
9 | selpw 4198 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
10 | selpw 4198 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
11 | ssinss1 3874 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ⊆ 𝐴) | |
12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ (𝑦 ⊆ 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ⊆ 𝐴)) |
13 | vex 3234 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
14 | 13 | inex2 4833 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝑦) ∈ V |
15 | 14 | elpw 4197 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝑦) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝑦) ⊆ 𝐴) |
16 | 12, 15 | syl6ibr 242 | . . . . . . . 8 ⊢ (𝑦 ⊆ 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
17 | 10, 16 | sylbi 207 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐴 → (𝑥 ⊆ 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
18 | 17 | com12 32 | . . . . . 6 ⊢ (𝑥 ⊆ 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
19 | 9, 18 | sylbi 207 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → (𝑦 ∈ 𝒫 𝐴 → (𝑥 ∩ 𝑦) ∈ 𝒫 𝐴)) |
20 | 19 | ralrimiv 2994 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴) |
21 | 20 | rgen 2951 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴 |
22 | 21 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴) |
23 | pwexg 4880 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
24 | istopg 20748 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴))) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝐴(𝑥 ∩ 𝑦) ∈ 𝒫 𝐴))) |
26 | 8, 22, 25 | mpbir2and 977 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 Topctop 20746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-sn 4211 df-pr 4213 df-uni 4469 df-top 20747 |
This theorem is referenced by: topnex 20848 distopon 20849 distps 20867 discld 20941 restdis 21030 dishaus 21234 discmp 21249 dis2ndc 21311 dislly 21348 dis1stc 21350 dissnlocfin 21380 locfindis 21381 txdis 21483 xkopt 21506 xkofvcn 21535 symgtgp 21952 dispcmp 30054 |
Copyright terms: Public domain | W3C validator |