Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   GIF version

Theorem dispcmp 30235
Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)

Proof of Theorem dispcmp
Dummy variables 𝑣 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21001 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 simpr 479 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 = {𝑥})
3 snelpwi 5061 . . . . . . . . . . . . 13 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
43adantr 472 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
52, 4eqeltrd 2839 . . . . . . . . . . 11 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
65rexlimiva 3166 . . . . . . . . . 10 (∃𝑥𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋)
76abssi 3818 . . . . . . . . 9 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋
8 simpl 474 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑢 = 𝑣)
9 simpr 479 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑥 = 𝑧)
109sneqd 4333 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → {𝑥} = {𝑧})
118, 10eqeq12d 2775 . . . . . . . . . . . . 13 ((𝑢 = 𝑣𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧}))
1211cbvrexdva 3317 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (∃𝑥𝑋 𝑢 = {𝑥} ↔ ∃𝑧𝑋 𝑣 = {𝑧}))
1312cbvabv 2885 . . . . . . . . . . 11 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧𝑋 𝑣 = {𝑧}}
1413dissnlocfin 21534 . . . . . . . . . 10 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
15 elpwg 4310 . . . . . . . . . 10 ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
1614, 15syl 17 . . . . . . . . 9 (𝑋𝑉 → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
177, 16mpbiri 248 . . . . . . . 8 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1817ad2antrr 764 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1914ad2antrr 764 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
2018, 19elind 3941 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)))
21 simpll 807 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋𝑉)
22 simpr 479 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋 = 𝑦)
2322eqcomd 2766 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑦 = 𝑋)
2413dissnref 21533 . . . . . . 7 ((𝑋𝑉 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
2521, 23, 24syl2anc 696 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
26 breq1 4807 . . . . . . 7 (𝑧 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦))
2726rspcev 3449 . . . . . 6 (({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)) ∧ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2820, 25, 27syl2anc 696 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2928ex 449 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
3029ralrimiva 3104 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
31 unipw 5067 . . . . 5 𝒫 𝑋 = 𝑋
3231eqcomi 2769 . . . 4 𝑋 = 𝒫 𝑋
3332iscref 30220 . . 3 (𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)))
341, 30, 33sylanbrc 701 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
35 ispcmp 30233 . 2 (𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
3634, 35sylibr 224 1 (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {cab 2746  wral 3050  wrex 3051  cin 3714  wss 3715  𝒫 cpw 4302  {csn 4321   cuni 4588   class class class wbr 4804  cfv 6049  Topctop 20900  Refcref 21507  LocFinclocfin 21509  CovHasRefccref 30218  Paracompcpcmp 30231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-1o 7729  df-en 8122  df-fin 8125  df-top 20901  df-ref 21510  df-locfin 21512  df-cref 30219  df-pcmp 30232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator