![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjxsn | Structured version Visualization version GIF version |
Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 4774 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
2 | moeq 3523 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
3 | elsni 4338 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
4 | 3 | adantr 472 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
5 | 4 | moimi 2658 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
7 | 1, 6 | mpgbir 1875 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃*wmo 2608 {csn 4321 Disj wdisj 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rmo 3058 df-v 3342 df-sn 4322 df-disj 4773 |
This theorem is referenced by: disjx0 4799 disjdifprg 29695 rossros 30552 meadjun 41182 |
Copyright terms: Public domain | W3C validator |