![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjpss | Structured version Visualization version GIF version |
Description: A class is a proper subset of its union with a disjoint nonempty class. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
disjpss | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . . . . . . . 8 ⊢ 𝐵 ⊆ 𝐵 | |
2 | 1 | biantru 527 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) |
3 | ssin 3978 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵) ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) | |
4 | 2, 3 | bitri 264 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ (𝐴 ∩ 𝐵)) |
5 | sseq2 3768 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∩ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
6 | 4, 5 | syl5bb 272 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∅)) |
7 | ss0 4117 | . . . . 5 ⊢ (𝐵 ⊆ ∅ → 𝐵 = ∅) | |
8 | 6, 7 | syl6bi 243 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ⊆ 𝐴 → 𝐵 = ∅)) |
9 | 8 | necon3ad 2945 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐵 ≠ ∅ → ¬ 𝐵 ⊆ 𝐴)) |
10 | 9 | imp 444 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → ¬ 𝐵 ⊆ 𝐴) |
11 | nsspssun 4000 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐵 ∪ 𝐴)) | |
12 | uncom 3900 | . . . 4 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
13 | 12 | psseq2i 3839 | . . 3 ⊢ (𝐴 ⊊ (𝐵 ∪ 𝐴) ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
14 | 11, 13 | bitri 264 | . 2 ⊢ (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
15 | 10, 14 | sylib 208 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐵 ≠ ∅) → 𝐴 ⊊ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ≠ wne 2932 ∪ cun 3713 ∩ cin 3714 ⊆ wss 3715 ⊊ wpss 3716 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 |
This theorem is referenced by: isfin1-3 9400 |
Copyright terms: Public domain | W3C validator |