Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjne Structured version   Visualization version   GIF version

Theorem disjne 4166
 Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)

Proof of Theorem disjne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj 4161 . . 3 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 eleq1 2838 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
32notbid 307 . . . . 5 (𝑥 = 𝐶 → (¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵))
43rspccva 3459 . . . 4 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → ¬ 𝐶𝐵)
5 eleq1a 2845 . . . . 5 (𝐷𝐵 → (𝐶 = 𝐷𝐶𝐵))
65necon3bd 2957 . . . 4 (𝐷𝐵 → (¬ 𝐶𝐵𝐶𝐷))
74, 6syl5com 31 . . 3 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → (𝐷𝐵𝐶𝐷))
81, 7sylanb 570 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → (𝐷𝐵𝐶𝐷))
983impia 1109 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061   ∩ cin 3722  ∅c0 4063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-v 3353  df-dif 3726  df-in 3730  df-nul 4064 This theorem is referenced by:  brdom7disj  9559  brdom6disj  9560  frlmssuvc1  20350  frlmsslsp  20352  kelac1  38159
 Copyright terms: Public domain W3C validator