![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjiunb | Structured version Visualization version GIF version |
Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
disjiunb.1 | ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) |
disjiunb.2 | ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
disjiunb | ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiunb.1 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) | |
2 | disjiunb.2 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) | |
3 | 1, 2 | iuneq12d 4698 | . 2 ⊢ (𝑖 = 𝑗 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐷 𝐸) |
4 | 3 | disjor 4786 | 1 ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1632 ∀wral 3050 ∩ cin 3714 ∅c0 4058 ∪ ciun 4672 Disj wdisj 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rmo 3058 df-v 3342 df-dif 3718 df-in 3722 df-ss 3729 df-nul 4059 df-iun 4674 df-disj 4773 |
This theorem is referenced by: disjiund 4795 |
Copyright terms: Public domain | W3C validator |