Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   GIF version

Theorem disjeq1 4759
 Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3805 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 disjss1 4758 . . 3 (𝐵𝐴 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
4 eqimss 3804 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 disjss1 4758 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
73, 6impbid 202 1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1630   ⊆ wss 3721  Disj wdisj 4752 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-rmo 3068  df-in 3728  df-ss 3735  df-disj 4753 This theorem is referenced by:  disjeq1d  4760  volfiniun  23534  disjrnmpt  29730  iundisj2cnt  29892  unelldsys  30555  sigapildsys  30559  ldgenpisyslem1  30560  rossros  30577  measvun  30606  pmeasmono  30720  pmeasadd  30721  meadjuni  41185
 Copyright terms: Public domain W3C validator