![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjeq0 | Structured version Visualization version GIF version |
Description: Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
disjeq0 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3958 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐵)) | |
2 | inidm 3971 | . . . . . 6 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
3 | 1, 2 | syl6eq 2821 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
4 | 3 | eqeq1d 2773 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
5 | eqtr 2790 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
6 | simpr 471 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐵 = ∅) | |
7 | 5, 6 | jca 501 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
8 | 7 | ex 397 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
9 | 4, 8 | sylbid 230 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
10 | 9 | com12 32 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
11 | eqtr3 2792 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵) | |
12 | 10, 11 | impbid1 215 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∩ cin 3722 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 |
This theorem is referenced by: epnsym 8668 |
Copyright terms: Public domain | W3C validator |