MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjel Structured version   Visualization version   GIF version

Theorem disjel 4168
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
Assertion
Ref Expression
disjel (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)

Proof of Theorem disjel
StepHypRef Expression
1 disj3 4165 . . 3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eleq2 2839 . . . 4 (𝐴 = (𝐴𝐵) → (𝐶𝐴𝐶 ∈ (𝐴𝐵)))
3 eldifn 3884 . . . 4 (𝐶 ∈ (𝐴𝐵) → ¬ 𝐶𝐵)
42, 3syl6bi 243 . . 3 (𝐴 = (𝐴𝐵) → (𝐶𝐴 → ¬ 𝐶𝐵))
51, 4sylbi 207 . 2 ((𝐴𝐵) = ∅ → (𝐶𝐴 → ¬ 𝐶𝐵))
65imp 393 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  cdif 3720  cin 3722  c0 4063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-v 3353  df-dif 3726  df-in 3730  df-nul 4064
This theorem is referenced by:  disjxun  4785  fvun1  6413  dedekindle  10407  fprodsplit  14903  unelldsys  30561  dvasin  33828
  Copyright terms: Public domain W3C validator