![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjel | Structured version Visualization version GIF version |
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
disjel | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4165 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eleq2 2839 | . . . 4 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldifn 3884 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
4 | 2, 3 | syl6bi 243 | . . 3 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
5 | 1, 4 | sylbi 207 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
6 | 5 | imp 393 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∖ cdif 3720 ∩ cin 3722 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-v 3353 df-dif 3726 df-in 3730 df-nul 4064 |
This theorem is referenced by: disjxun 4785 fvun1 6413 dedekindle 10407 fprodsplit 14903 unelldsys 30561 dvasin 33828 |
Copyright terms: Public domain | W3C validator |