Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdsct Structured version   Visualization version   GIF version

Theorem disjdsct 29454
Description: A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 5946) (Contributed by Thierry Arnoux, 28-Feb-2017.)
Hypotheses
Ref Expression
disjdsct.0 𝑥𝜑
disjdsct.1 𝑥𝐴
disjdsct.2 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
disjdsct.3 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjdsct (𝜑 → Fun (𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem disjdsct
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 disjdsct.3 . . . . . . . 8 (𝜑Disj 𝑥𝐴 𝐵)
2 disjdsct.1 . . . . . . . . 9 𝑥𝐴
32disjorsf 29365 . . . . . . . 8 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
41, 3sylib 208 . . . . . . 7 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
54r19.21bi 2929 . . . . . 6 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
65r19.21bi 2929 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
7 simpr3 1067 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)
8 disjdsct.2 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ (𝑉 ∖ {∅}))
9 eldifsni 4311 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≠ ∅)
1110sbimi 1884 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵 ≠ ∅)
12 sban 2397 . . . . . . . . . . . 12 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴))
13 disjdsct.0 . . . . . . . . . . . . . 14 𝑥𝜑
1413sbf 2378 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝜑𝜑)
152clelsb3f 29292 . . . . . . . . . . . . 13 ([𝑖 / 𝑥]𝑥𝐴𝑖𝐴)
1614, 15anbi12i 732 . . . . . . . . . . . 12 (([𝑖 / 𝑥]𝜑 ∧ [𝑖 / 𝑥]𝑥𝐴) ↔ (𝜑𝑖𝐴))
1712, 16bitri 264 . . . . . . . . . . 11 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
18 sbsbc 3433 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ [𝑖 / 𝑥]𝐵 ≠ ∅)
19 sbcne12 3977 . . . . . . . . . . . 12 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵𝑖 / 𝑥∅)
20 csb0 3973 . . . . . . . . . . . . 13 𝑖 / 𝑥∅ = ∅
2120neeq2i 2856 . . . . . . . . . . . 12 (𝑖 / 𝑥𝐵𝑖 / 𝑥∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2218, 19, 213bitri 286 . . . . . . . . . . 11 ([𝑖 / 𝑥]𝐵 ≠ ∅ ↔ 𝑖 / 𝑥𝐵 ≠ ∅)
2311, 17, 223imtr3i 280 . . . . . . . . . 10 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵 ≠ ∅)
24233ad2antr1 1224 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵 ≠ ∅)
25 disj3 4012 . . . . . . . . . . . . 13 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ↔ 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2625biimpi 206 . . . . . . . . . . . 12 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵 = (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
2726neeq1d 2850 . . . . . . . . . . 11 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → (𝑖 / 𝑥𝐵 ≠ ∅ ↔ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅))
2827biimpa 501 . . . . . . . . . 10 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅)
29 difn0 3934 . . . . . . . . . 10 ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) ≠ ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3028, 29syl 17 . . . . . . . . 9 (((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ ∧ 𝑖 / 𝑥𝐵 ≠ ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
317, 24, 30syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑖𝐴𝑗𝐴 ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅)) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
32313anassrs 1288 . . . . . . 7 ((((𝜑𝑖𝐴) ∧ 𝑗𝐴) ∧ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)
3332ex 450 . . . . . 6 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅ → 𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3433orim2d 884 . . . . 5 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → ((𝑖 = 𝑗 ∨ (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
356, 34mpd 15 . . . 4 (((𝜑𝑖𝐴) ∧ 𝑗𝐴) → (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3635ralrimiva 2963 . . 3 ((𝜑𝑖𝐴) → ∀𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
3736ralrimiva 2963 . 2 (𝜑 → ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵))
38 nfmpt1 4738 . . 3 𝑥(𝑥𝐴𝐵)
39 eqid 2620 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4013, 2, 38, 39, 8funcnv4mpt 29444 . 2 (𝜑 → (Fun (𝑥𝐴𝐵) ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
4137, 40mpbird 247 1 (𝜑 → Fun (𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1481  wnf 1706  [wsb 1878  wcel 1988  wnfc 2749  wne 2791  wral 2909  [wsbc 3429  csb 3526  cdif 3564  cin 3566  c0 3907  {csn 4168  Disj wdisj 4611  cmpt 4720  ccnv 5103  Fun wfun 5870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-fv 5884
This theorem is referenced by:  esumrnmpt  30088  measvunilem  30249
  Copyright terms: Public domain W3C validator