MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj1 Structured version   Visualization version   GIF version

Theorem disj1 4052
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj1
StepHypRef Expression
1 disj 4050 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 df-ral 2946 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
31, 2bitri 264 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1521   = wceq 1523  wcel 2030  wral 2941  cin 3606  c0 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-dif 3610  df-in 3614  df-nul 3949
This theorem is referenced by:  reldisj  4053  disj3  4054  undif4  4068  disjsn  4278  funun  5970  zfregs2  8647  dfac5lem4  8987  isf32lem9  9221  fzodisj  12541  fzodisjsn  12545  bnj1280  31214  ecin0  34257  zfregs2VD  39390
  Copyright terms: Public domain W3C validator