Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disamis Structured version   Visualization version   GIF version

Theorem disamis 2575
 Description: "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. (In Aristotelian notation, IAI-3: MiP and MaS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
disamis.maj 𝑥(𝜑𝜓)
disamis.min 𝑥(𝜑𝜒)
Assertion
Ref Expression
disamis 𝑥(𝜒𝜓)

Proof of Theorem disamis
StepHypRef Expression
1 disamis.maj . 2 𝑥(𝜑𝜓)
2 disamis.min . . . 4 𝑥(𝜑𝜒)
32spi 2052 . . 3 (𝜑𝜒)
43anim1i 591 . 2 ((𝜑𝜓) → (𝜒𝜓))
51, 4eximii 1761 1 𝑥(𝜒𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1478  ∃wex 1701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702 This theorem is referenced by:  bocardo  2577
 Copyright terms: Public domain W3C validator