![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dis1stc | Structured version Visualization version GIF version |
Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
dis1stc | ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1st𝜔) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5057 | . . . . . . . 8 ⊢ {𝑥} ∈ V | |
2 | distop 21001 | . . . . . . . 8 ⊢ ({𝑥} ∈ V → 𝒫 {𝑥} ∈ Top) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ Top |
4 | tgtop 20979 | . . . . . . 7 ⊢ (𝒫 {𝑥} ∈ Top → (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥}) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) = 𝒫 {𝑥} |
6 | topbas 20978 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ∈ Top → 𝒫 {𝑥} ∈ TopBases) | |
7 | 3, 6 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ∈ TopBases |
8 | snfi 8203 | . . . . . . . . . 10 ⊢ {𝑥} ∈ Fin | |
9 | pwfi 8426 | . . . . . . . . . 10 ⊢ ({𝑥} ∈ Fin ↔ 𝒫 {𝑥} ∈ Fin) | |
10 | 8, 9 | mpbi 220 | . . . . . . . . 9 ⊢ 𝒫 {𝑥} ∈ Fin |
11 | isfinite 8722 | . . . . . . . . 9 ⊢ (𝒫 {𝑥} ∈ Fin ↔ 𝒫 {𝑥} ≺ ω) | |
12 | 10, 11 | mpbi 220 | . . . . . . . 8 ⊢ 𝒫 {𝑥} ≺ ω |
13 | sdomdom 8149 | . . . . . . . 8 ⊢ (𝒫 {𝑥} ≺ ω → 𝒫 {𝑥} ≼ ω) | |
14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ 𝒫 {𝑥} ≼ ω |
15 | 2ndci 21453 | . . . . . . 7 ⊢ ((𝒫 {𝑥} ∈ TopBases ∧ 𝒫 {𝑥} ≼ ω) → (topGen‘𝒫 {𝑥}) ∈ 2nd𝜔) | |
16 | 7, 14, 15 | mp2an 710 | . . . . . 6 ⊢ (topGen‘𝒫 {𝑥}) ∈ 2nd𝜔 |
17 | 5, 16 | eqeltrri 2836 | . . . . 5 ⊢ 𝒫 {𝑥} ∈ 2nd𝜔 |
18 | 2ndc1stc 21456 | . . . . 5 ⊢ (𝒫 {𝑥} ∈ 2nd𝜔 → 𝒫 {𝑥} ∈ 1st𝜔) | |
19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ 𝒫 {𝑥} ∈ 1st𝜔 |
20 | 19 | rgenw 3062 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1st𝜔 |
21 | dislly 21502 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 1st𝜔 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 1st𝜔)) | |
22 | 20, 21 | mpbiri 248 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally 1st𝜔) |
23 | lly1stc 21501 | . 2 ⊢ Locally 1st𝜔 = 1st𝜔 | |
24 | 22, 23 | syl6eleq 2849 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1st𝜔) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 𝒫 cpw 4302 {csn 4321 class class class wbr 4804 ‘cfv 6049 ωcom 7230 ≼ cdom 8119 ≺ csdm 8120 Fincfn 8121 topGenctg 16300 Topctop 20900 TopBasesctb 20951 1st𝜔c1stc 21442 2nd𝜔c2ndc 21443 Locally clly 21469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fi 8482 df-card 8955 df-acn 8958 df-rest 16285 df-topgen 16306 df-top 20901 df-topon 20918 df-bases 20952 df-1stc 21444 df-2ndc 21445 df-lly 21471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |