MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirtr Structured version   Visualization version   GIF version

Theorem dirtr 17283
Description: A direction is transitive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirtr (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)

Proof of Theorem dirtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldir 17280 . . . . 5 (𝑅 ∈ DirRel → Rel 𝑅)
2 brrelex 5190 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
32ex 449 . . . . . 6 (Rel 𝑅 → (𝐴𝑅𝐵𝐴 ∈ V))
4 brrelex 5190 . . . . . . 7 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
54ex 449 . . . . . 6 (Rel 𝑅 → (𝐵𝑅𝐶𝐵 ∈ V))
63, 5anim12d 585 . . . . 5 (Rel 𝑅 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
71, 6syl 17 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
8 eqid 2651 . . . . . . . . . . . 12 𝑅 = 𝑅
98isdir 17279 . . . . . . . . . . 11 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
109ibi 256 . . . . . . . . . 10 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
1110simprd 478 . . . . . . . . 9 (𝑅 ∈ DirRel → ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))
1211simpld 474 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅𝑅) ⊆ 𝑅)
13 cotr 5543 . . . . . . . 8 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1412, 13sylib 208 . . . . . . 7 (𝑅 ∈ DirRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
15 breq12 4690 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
16153adant3 1101 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
17 breq12 4690 . . . . . . . . . . 11 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
18173adant1 1099 . . . . . . . . . 10 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1916, 18anbi12d 747 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
20 breq12 4690 . . . . . . . . . 10 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
21203adant2 1100 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
2219, 21imbi12d 333 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2322spc3gv 3329 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2414, 23syl5 34 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶𝑉) → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
25243expia 1286 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉 → (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))))
2625com4t 93 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐶𝑉𝐴𝑅𝐶))))
277, 26mpdd 43 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → (𝐶𝑉𝐴𝑅𝐶)))
2827imp31 447 . 2 (((𝑅 ∈ DirRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) ∧ 𝐶𝑉) → 𝐴𝑅𝐶)
2928an32s 863 1 (((𝑅 ∈ DirRel ∧ 𝐶𝑉) ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wal 1521   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607   cuni 4468   class class class wbr 4685   I cid 5052   × cxp 5141  ccnv 5142  cres 5145  ccom 5147  Rel wrel 5148  DirRelcdir 17275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-res 5155  df-dir 17277
This theorem is referenced by:  tailfb  32497
  Copyright terms: Public domain W3C validator