![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirref | Structured version Visualization version GIF version |
Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirref.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
dirref | ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ 𝐴 = 𝐴 | |
2 | resieq 5565 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
3 | 2 | anidms 680 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) |
4 | 1, 3 | mpbiri 248 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
5 | dirref.1 | . . . . . . 7 ⊢ 𝑋 = dom 𝑅 | |
6 | dirdm 17435 | . . . . . . 7 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) | |
7 | 5, 6 | syl5eq 2806 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → 𝑋 = ∪ ∪ 𝑅) |
8 | 7 | reseq2d 5551 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) = ( I ↾ ∪ ∪ 𝑅)) |
9 | eqid 2760 | . . . . . . . . 9 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
10 | 9 | isdir 17433 | . . . . . . . 8 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
11 | 10 | ibi 256 | . . . . . . 7 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
12 | 11 | simpld 477 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅)) |
13 | 12 | simprd 482 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
14 | 8, 13 | eqsstrd 3780 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ 𝑋) ⊆ 𝑅) |
15 | 14 | ssbrd 4847 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑅𝐴)) |
16 | 4, 15 | syl5 34 | . 2 ⊢ (𝑅 ∈ DirRel → (𝐴 ∈ 𝑋 → 𝐴𝑅𝐴)) |
17 | 16 | imp 444 | 1 ⊢ ((𝑅 ∈ DirRel ∧ 𝐴 ∈ 𝑋) → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 class class class wbr 4804 I cid 5173 × cxp 5264 ◡ccnv 5265 dom cdm 5266 ↾ cres 5268 ∘ ccom 5270 Rel wrel 5271 DirRelcdir 17429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-dir 17431 |
This theorem is referenced by: tailini 32677 |
Copyright terms: Public domain | W3C validator |