Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 40835
Description: the Dirichlet Kernel has period . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 · π)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 · π)
21eqcomi 2770 . . . . . . . . . . . 12 (2 · π) = 𝑇
32oveq2i 6826 . . . . . . . . . . 11 (1 · (2 · π)) = (1 · 𝑇)
4 2re 11303 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 24431 . . . . . . . . . . . . . . 15 π ∈ ℝ
64, 5remulcli 10267 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
71, 6eqeltri 2836 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 10265 . . . . . . . . . . . 12 𝑇 ∈ ℂ
98mulid2i 10256 . . . . . . . . . . 11 (1 · 𝑇) = 𝑇
103, 9eqtri 2783 . . . . . . . . . 10 (1 · (2 · π)) = 𝑇
1110oveq2i 6826 . . . . . . . . 9 (𝑥 + (1 · (2 · π))) = (𝑥 + 𝑇)
1211eqcomi 2770 . . . . . . . 8 (𝑥 + 𝑇) = (𝑥 + (1 · (2 · π)))
1312oveq1i 6825 . . . . . . 7 ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π))
1413a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
15 id 22 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
1615ad2antlr 765 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 𝑥 ∈ ℝ)
17 2rp 12051 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 24434 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 12069 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 710 . . . . . . . 8 (2 · π) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (2 · π) ∈ ℝ+)
22 1z 11620 . . . . . . . 8 1 ∈ ℤ
2322a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 1 ∈ ℤ)
24 modcyc 12920 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
2516, 21, 23, 24syl3anc 1477 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
26 simpr 479 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) = 0)
2714, 25, 263eqtrd 2799 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = 0)
2827iftrued 4239 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
29 iftrue 4237 . . . . 5 ((𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3029adantl 473 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3128, 30eqtr4d 2798 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
32 iffalse 4240 . . . . 5 (¬ (𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
3332adantl 473 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
34 nncn 11241 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 halfcn 11460 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3734, 36addcld 10272 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + (1 / 2)) ∈ ℂ)
3837adantr 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
39 recn 10239 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4138, 40mulcld 10273 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ)
4241sincld 15080 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
4342adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
446recni 10265 . . . . . . . 8 (2 · π) ∈ ℂ
4544a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (2 · π) ∈ ℂ)
4640halfcld 11490 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
4746sincld 15080 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
4845, 47mulcld 10273 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
4948adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
50 dirkerdenne0 40832 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5150adantll 752 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5243, 49, 51div2negd 11029 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
5313a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
5420, 22, 24mp3an23 1565 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
5553, 54eqtrd 2795 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
5655adantr 472 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
57 simpr 479 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ (𝑥 mod (2 · π)) = 0)
5857neqned 2940 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) ≠ 0)
5956, 58eqnetrd 3000 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) ≠ 0)
6059neneqd 2938 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ ((𝑥 + 𝑇) mod (2 · π)) = 0)
61 iffalse 4240 . . . . . . . 8 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))))
621oveq2i 6826 . . . . . . . . . . 11 (𝑥 + 𝑇) = (𝑥 + (2 · π))
6362oveq2i 6826 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · (𝑥 + 𝑇)) = ((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))
6463fveq2i 6357 . . . . . . . . 9 (sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) = (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π))))
6562oveq1i 6825 . . . . . . . . . . 11 ((𝑥 + 𝑇) / 2) = ((𝑥 + (2 · π)) / 2)
6665fveq2i 6357 . . . . . . . . . 10 (sin‘((𝑥 + 𝑇) / 2)) = (sin‘((𝑥 + (2 · π)) / 2))
6766oveq2i 6826 . . . . . . . . 9 ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))) = ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))
6864, 67oveq12i 6827 . . . . . . . 8 ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))))
6961, 68syl6eq 2811 . . . . . . 7 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7060, 69syl 17 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7170adantll 752 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · π) ∈ ℂ)
7334, 36, 72adddird 10278 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))))
74 ax-1cn 10207 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 2cnne0 11455 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
76 2cn 11304 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
77 picn 24432 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
7876, 77mulcli 10258 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
79 div32 10918 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 · π) ∈ ℂ) → ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2)))
8074, 75, 78, 79mp3an 1573 . . . . . . . . . . . . . . 15 ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2))
81 2ne0 11326 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
8278, 76, 81divcli 10980 . . . . . . . . . . . . . . . . 17 ((2 · π) / 2) ∈ ℂ
8382mulid2i 10256 . . . . . . . . . . . . . . . 16 (1 · ((2 · π) / 2)) = ((2 · π) / 2)
8477, 76, 81divcan3i 10984 . . . . . . . . . . . . . . . 16 ((2 · π) / 2) = π
8583, 84eqtri 2783 . . . . . . . . . . . . . . 15 (1 · ((2 · π) / 2)) = π
8680, 85eqtri 2783 . . . . . . . . . . . . . 14 ((1 / 2) · (2 · π)) = π
8786oveq2i 6826 . . . . . . . . . . . . 13 ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))) = ((𝑁 · (2 · π)) + π)
8873, 87syl6eq 2811 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + π))
8988oveq2d 6831 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9089adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9138, 40, 45adddid 10277 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))))
9234, 72mulcld 10273 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 · (2 · π)) ∈ ℂ)
9392adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 · (2 · π)) ∈ ℂ)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → π ∈ ℂ)
9541, 93, 94addassd 10275 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9690, 91, 953eqtr4d 2805 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π))
9796fveq2d 6358 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)))
9841, 93addcld 10272 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ)
99 sinppi 24462 . . . . . . . . 9 ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
101 simpl 474 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℕ)
102101nnzd 11694 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℤ)
103 sinper 24454 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
10441, 102, 103syl2anc 696 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
105104negeqd 10488 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10697, 100, 1053eqtrd 2799 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10744a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (2 · π) ∈ ℂ)
10876a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ∈ ℂ)
10981a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ≠ 0)
11039, 107, 108, 109divdird 11052 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + ((2 · π) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((2 · π) / 2) = π)
112111oveq2d 6831 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 / 2) + ((2 · π) / 2)) = ((𝑥 / 2) + π))
113110, 112eqtrd 2795 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + π))
114113fveq2d 6358 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = (sin‘((𝑥 / 2) + π)))
11539halfcld 11490 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
116 sinppi 24462 . . . . . . . . . . 11 ((𝑥 / 2) ∈ ℂ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
117115, 116syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
118114, 117eqtrd 2795 . . . . . . . . 9 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = -(sin‘(𝑥 / 2)))
119118oveq2d 6831 . . . . . . . 8 (𝑥 ∈ ℝ → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
120119adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
121106, 120oveq12d 6833 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
122121adantr 472 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
123115sincld 15080 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) ∈ ℂ)
124107, 123mulneg2d 10697 . . . . . . 7 (𝑥 ∈ ℝ → ((2 · π) · -(sin‘(𝑥 / 2))) = -((2 · π) · (sin‘(𝑥 / 2))))
125124oveq2d 6831 . . . . . 6 (𝑥 ∈ ℝ → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
126125ad2antlr 765 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
12771, 122, 1263eqtrrd 2800 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2802 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
12931, 128pm2.61dan 867 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
1307a1i 11 . . . 4 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
13115, 130readdcld 10282 . . 3 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
133132dirkerval2 40833 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 + 𝑇) ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
134131, 133sylan2 492 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
135132dirkerval2 40833 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘𝑥) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
136129, 134, 1353eqtr4d 2805 1 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  ifcif 4231  cmpt 4882  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  -cneg 10480   / cdiv 10897  cn 11233  2c2 11283  cz 11590  +crp 12046   mod cmo 12883  sincsin 15014  πcpi 15017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-fac 13276  df-bc 13305  df-hash 13333  df-shft 14027  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-ef 15018  df-sin 15020  df-cos 15021  df-pi 15023  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-limc 23850  df-dv 23851
This theorem is referenced by:  fourierdlem111  40956
  Copyright terms: Public domain W3C validator