Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkerper Structured version   Visualization version   GIF version

Theorem dirkerper 39650
Description: the Dirichlet Kernel has period . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkerper.1 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkerper.2 𝑇 = (2 · π)
Assertion
Ref Expression
dirkerper ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Distinct variable groups:   𝑦,𝑁   𝑦,𝑛
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem dirkerper
StepHypRef Expression
1 dirkerper.2 . . . . . . . . . . . . 13 𝑇 = (2 · π)
21eqcomi 2630 . . . . . . . . . . . 12 (2 · π) = 𝑇
32oveq2i 6626 . . . . . . . . . . 11 (1 · (2 · π)) = (1 · 𝑇)
4 2re 11050 . . . . . . . . . . . . . . 15 2 ∈ ℝ
5 pire 24148 . . . . . . . . . . . . . . 15 π ∈ ℝ
64, 5remulcli 10014 . . . . . . . . . . . . . 14 (2 · π) ∈ ℝ
71, 6eqeltri 2694 . . . . . . . . . . . . 13 𝑇 ∈ ℝ
87recni 10012 . . . . . . . . . . . 12 𝑇 ∈ ℂ
98mulid2i 10003 . . . . . . . . . . 11 (1 · 𝑇) = 𝑇
103, 9eqtri 2643 . . . . . . . . . 10 (1 · (2 · π)) = 𝑇
1110oveq2i 6626 . . . . . . . . 9 (𝑥 + (1 · (2 · π))) = (𝑥 + 𝑇)
1211eqcomi 2630 . . . . . . . 8 (𝑥 + 𝑇) = (𝑥 + (1 · (2 · π)))
1312oveq1i 6625 . . . . . . 7 ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π))
1413a1i 11 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
15 id 22 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
1615ad2antlr 762 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 𝑥 ∈ ℝ)
17 2rp 11797 . . . . . . . . 9 2 ∈ ℝ+
18 pirp 24151 . . . . . . . . 9 π ∈ ℝ+
19 rpmulcl 11815 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
2017, 18, 19mp2an 707 . . . . . . . 8 (2 · π) ∈ ℝ+
2120a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (2 · π) ∈ ℝ+)
22 1z 11367 . . . . . . . 8 1 ∈ ℤ
2322a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → 1 ∈ ℤ)
24 modcyc 12661 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (2 · π) ∈ ℝ+ ∧ 1 ∈ ℤ) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
2516, 21, 23, 24syl3anc 1323 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
26 simpr 477 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) = 0)
2714, 25, 263eqtrd 2659 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = 0)
2827iftrued 4072 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
29 iftrue 4070 . . . . 5 ((𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3029adantl 482 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = (((2 · 𝑁) + 1) / (2 · π)))
3128, 30eqtr4d 2658 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
32 iffalse 4073 . . . . 5 (¬ (𝑥 mod (2 · π)) = 0 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
3332adantl 482 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
34 nncn 10988 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
35 halfcn 11207 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
3635a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3734, 36addcld 10019 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + (1 / 2)) ∈ ℂ)
3837adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℂ)
39 recn 9986 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4039adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
4138, 40mulcld 10020 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ)
4241sincld 14804 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
4342adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (sin‘((𝑁 + (1 / 2)) · 𝑥)) ∈ ℂ)
446recni 10012 . . . . . . . 8 (2 · π) ∈ ℂ
4544a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (2 · π) ∈ ℂ)
4640halfcld 11237 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
4746sincld 14804 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
4845, 47mulcld 10020 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
4948adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ∈ ℂ)
50 dirkerdenne0 39647 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5150adantll 749 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((2 · π) · (sin‘(𝑥 / 2))) ≠ 0)
5243, 49, 51div2negd 10776 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))
5313a1i 11 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = ((𝑥 + (1 · (2 · π))) mod (2 · π)))
5420, 22, 24mp3an23 1413 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (1 · (2 · π))) mod (2 · π)) = (𝑥 mod (2 · π)))
5553, 54eqtrd 2655 . . . . . . . . . 10 (𝑥 ∈ ℝ → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
5655adantr 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) = (𝑥 mod (2 · π)))
57 simpr 477 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ (𝑥 mod (2 · π)) = 0)
5857neqned 2797 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → (𝑥 mod (2 · π)) ≠ 0)
5956, 58eqnetrd 2857 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((𝑥 + 𝑇) mod (2 · π)) ≠ 0)
6059neneqd 2795 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → ¬ ((𝑥 + 𝑇) mod (2 · π)) = 0)
61 iffalse 4073 . . . . . . . 8 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))))
621oveq2i 6626 . . . . . . . . . . 11 (𝑥 + 𝑇) = (𝑥 + (2 · π))
6362oveq2i 6626 . . . . . . . . . 10 ((𝑁 + (1 / 2)) · (𝑥 + 𝑇)) = ((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))
6463fveq2i 6161 . . . . . . . . 9 (sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) = (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π))))
6562oveq1i 6625 . . . . . . . . . . 11 ((𝑥 + 𝑇) / 2) = ((𝑥 + (2 · π)) / 2)
6665fveq2i 6161 . . . . . . . . . 10 (sin‘((𝑥 + 𝑇) / 2)) = (sin‘((𝑥 + (2 · π)) / 2))
6766oveq2i 6626 . . . . . . . . 9 ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))) = ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))
6864, 67oveq12i 6627 . . . . . . . 8 ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2)))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))))
6961, 68syl6eq 2671 . . . . . . 7 (¬ ((𝑥 + 𝑇) mod (2 · π)) = 0 → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7060, 69syl 17 . . . . . 6 ((𝑥 ∈ ℝ ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7170adantll 749 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))))
7244a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · π) ∈ ℂ)
7334, 36, 72adddird 10025 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))))
74 ax-1cn 9954 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 2cnne0 11202 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 ≠ 0)
76 2cn 11051 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
77 picn 24149 . . . . . . . . . . . . . . . . 17 π ∈ ℂ
7876, 77mulcli 10005 . . . . . . . . . . . . . . . 16 (2 · π) ∈ ℂ
79 div32 10665 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 · π) ∈ ℂ) → ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2)))
8074, 75, 78, 79mp3an 1421 . . . . . . . . . . . . . . 15 ((1 / 2) · (2 · π)) = (1 · ((2 · π) / 2))
81 2ne0 11073 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
8278, 76, 81divcli 10727 . . . . . . . . . . . . . . . . 17 ((2 · π) / 2) ∈ ℂ
8382mulid2i 10003 . . . . . . . . . . . . . . . 16 (1 · ((2 · π) / 2)) = ((2 · π) / 2)
8477, 76, 81divcan3i 10731 . . . . . . . . . . . . . . . 16 ((2 · π) / 2) = π
8583, 84eqtri 2643 . . . . . . . . . . . . . . 15 (1 · ((2 · π) / 2)) = π
8680, 85eqtri 2643 . . . . . . . . . . . . . 14 ((1 / 2) · (2 · π)) = π
8786oveq2i 6626 . . . . . . . . . . . . 13 ((𝑁 · (2 · π)) + ((1 / 2) · (2 · π))) = ((𝑁 · (2 · π)) + π)
8873, 87syl6eq 2671 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + (1 / 2)) · (2 · π)) = ((𝑁 · (2 · π)) + π))
8988oveq2d 6631 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9089adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9138, 40, 45adddid 10024 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 + (1 / 2)) · (2 · π))))
9234, 72mulcld 10020 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 · (2 · π)) ∈ ℂ)
9392adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑁 · (2 · π)) ∈ ℂ)
9477a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → π ∈ ℂ)
9541, 93, 94addassd 10022 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π) = (((𝑁 + (1 / 2)) · 𝑥) + ((𝑁 · (2 · π)) + π)))
9690, 91, 953eqtr4d 2665 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝑁 + (1 / 2)) · (𝑥 + (2 · π))) = ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π))
9796fveq2d 6162 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)))
9841, 93addcld 10019 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ)
99 sinppi 24179 . . . . . . . . 9 ((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) ∈ ℂ → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
10098, 99syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π))) + π)) = -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))))
101 simpl 473 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℕ)
102101nnzd 11441 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℤ)
103 sinper 24171 . . . . . . . . . 10 ((((𝑁 + (1 / 2)) · 𝑥) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
10441, 102, 103syl2anc 692 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
105104negeqd 10235 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → -(sin‘(((𝑁 + (1 / 2)) · 𝑥) + (𝑁 · (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10697, 100, 1053eqtrd 2659 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) = -(sin‘((𝑁 + (1 / 2)) · 𝑥)))
10744a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (2 · π) ∈ ℂ)
10876a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ∈ ℂ)
10981a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 2 ≠ 0)
11039, 107, 108, 109divdird 10799 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + ((2 · π) / 2)))
11184a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((2 · π) / 2) = π)
112111oveq2d 6631 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑥 / 2) + ((2 · π) / 2)) = ((𝑥 / 2) + π))
113110, 112eqtrd 2655 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 + (2 · π)) / 2) = ((𝑥 / 2) + π))
114113fveq2d 6162 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = (sin‘((𝑥 / 2) + π)))
11539halfcld 11237 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
116 sinppi 24179 . . . . . . . . . . 11 ((𝑥 / 2) ∈ ℂ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
117115, 116syl 17 . . . . . . . . . 10 (𝑥 ∈ ℝ → (sin‘((𝑥 / 2) + π)) = -(sin‘(𝑥 / 2)))
118114, 117eqtrd 2655 . . . . . . . . 9 (𝑥 ∈ ℝ → (sin‘((𝑥 + (2 · π)) / 2)) = -(sin‘(𝑥 / 2)))
119118oveq2d 6631 . . . . . . . 8 (𝑥 ∈ ℝ → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
120119adantl 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2))) = ((2 · π) · -(sin‘(𝑥 / 2))))
121106, 120oveq12d 6633 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
122121adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → ((sin‘((𝑁 + (1 / 2)) · (𝑥 + (2 · π)))) / ((2 · π) · (sin‘((𝑥 + (2 · π)) / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))))
123115sincld 14804 . . . . . . . 8 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) ∈ ℂ)
124107, 123mulneg2d 10444 . . . . . . 7 (𝑥 ∈ ℝ → ((2 · π) · -(sin‘(𝑥 / 2))) = -((2 · π) · (sin‘(𝑥 / 2))))
125124oveq2d 6631 . . . . . 6 (𝑥 ∈ ℝ → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
126125ad2antlr 762 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · -(sin‘(𝑥 / 2)))) = (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))))
12771, 122, 1263eqtrrd 2660 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → (-(sin‘((𝑁 + (1 / 2)) · 𝑥)) / -((2 · π) · (sin‘(𝑥 / 2)))) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
12833, 52, 1273eqtr2rd 2662 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 mod (2 · π)) = 0) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
12931, 128pm2.61dan 831 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
1307a1i 11 . . . 4 (𝑥 ∈ ℝ → 𝑇 ∈ ℝ)
13115, 130readdcld 10029 . . 3 (𝑥 ∈ ℝ → (𝑥 + 𝑇) ∈ ℝ)
132 dirkerper.1 . . . 4 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
133132dirkerval2 39648 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 + 𝑇) ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
134131, 133sylan2 491 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = if(((𝑥 + 𝑇) mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · (𝑥 + 𝑇))) / ((2 · π) · (sin‘((𝑥 + 𝑇) / 2))))))
135132dirkerval2 39648 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘𝑥) = if((𝑥 mod (2 · π)) = 0, (((2 · 𝑁) + 1) / (2 · π)), ((sin‘((𝑁 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))
136129, 134, 1353eqtr4d 2665 1 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐷𝑁)‘(𝑥 + 𝑇)) = ((𝐷𝑁)‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  ifcif 4064  cmpt 4683  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  -cneg 10227   / cdiv 10644  cn 10980  2c2 11030  cz 11337  +crp 11792   mod cmo 12624  sincsin 14738  πcpi 14741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ioc 12138  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-fac 13017  df-bc 13046  df-hash 13074  df-shft 13757  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-ef 14742  df-sin 14744  df-cos 14745  df-pi 14747  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-lp 20880  df-perf 20881  df-cn 20971  df-cnp 20972  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cncf 22621  df-limc 23570  df-dv 23571
This theorem is referenced by:  fourierdlem111  39771
  Copyright terms: Public domain W3C validator