![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipsubdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipsubdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
ipsubdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipsubdi | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
2 | 1 | 3com13 1118 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
3 | id 22 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
4 | 3 | 3com12 1117 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
5 | ipsubdir.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ipsubdir.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
7 | ipsubdir.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
8 | 5, 6, 7 | dipsubdir 27983 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝑀𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) |
9 | 4, 8 | sylan2 492 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝑀𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) |
10 | 9 | fveq2d 6344 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴)))) |
11 | phnv 27949 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
12 | simpl 474 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
13 | 5, 6 | nvmcl 27781 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑀𝐶) ∈ 𝑋) |
14 | 13 | 3com23 1120 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑀𝐶) ∈ 𝑋) |
15 | 14 | 3adant3r3 1176 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑀𝐶) ∈ 𝑋) |
16 | simpr3 1214 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
17 | 5, 7 | dipcj 27849 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝑀𝐶) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
18 | 12, 15, 16, 17 | syl3anc 1463 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
19 | 11, 18 | sylan 489 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
20 | 5, 7 | dipcl 27847 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
21 | 20 | 3adant3r1 1174 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑃𝐴) ∈ ℂ) |
22 | 5, 7 | dipcl 27847 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
23 | 22 | 3adant3r2 1175 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐶𝑃𝐴) ∈ ℂ) |
24 | cjsub 14059 | . . . . . 6 ⊢ (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐶𝑃𝐴) ∈ ℂ) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴)))) | |
25 | 21, 23, 24 | syl2anc 696 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴)))) |
26 | 5, 7 | dipcj 27849 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
27 | 26 | 3adant3r1 1174 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
28 | 5, 7 | dipcj 27849 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
29 | 28 | 3adant3r2 1175 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
30 | 27, 29 | oveq12d 6819 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
31 | 25, 30 | eqtrd 2782 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
32 | 11, 31 | sylan 489 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
33 | 10, 19, 32 | 3eqtr3d 2790 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
34 | 2, 33 | sylan2 492 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 − cmin 10429 ∗ccj 14006 NrmCVeccnv 27719 BaseSetcba 27721 −𝑣 cnsb 27724 ·𝑖OLDcdip 27835 CPreHilOLDccphlo 27947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-addf 10178 ax-mulf 10179 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-om 7219 df-1st 7321 df-2nd 7322 df-supp 7452 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7899 df-map 8013 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8429 df-fi 8470 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-cda 9153 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-q 11953 df-rp 11997 df-xneg 12110 df-xadd 12111 df-xmul 12112 df-ioo 12343 df-icc 12346 df-fz 12491 df-fzo 12631 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-clim 14389 df-sum 14587 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-starv 16129 df-sca 16130 df-vsca 16131 df-ip 16132 df-tset 16133 df-ple 16134 df-ds 16137 df-unif 16138 df-hom 16139 df-cco 16140 df-rest 16256 df-topn 16257 df-0g 16275 df-gsum 16276 df-topgen 16277 df-pt 16278 df-prds 16281 df-xrs 16335 df-qtop 16340 df-imas 16341 df-xps 16343 df-mre 16419 df-mrc 16420 df-acs 16422 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-submnd 17508 df-mulg 17713 df-cntz 17921 df-cmn 18366 df-psmet 19911 df-xmet 19912 df-met 19913 df-bl 19914 df-mopn 19915 df-cnfld 19920 df-top 20872 df-topon 20889 df-topsp 20910 df-bases 20923 df-cld 20996 df-ntr 20997 df-cls 20998 df-cn 21204 df-cnp 21205 df-t1 21291 df-haus 21292 df-tx 21538 df-hmeo 21731 df-xms 22297 df-ms 22298 df-tms 22299 df-grpo 27627 df-gid 27628 df-ginv 27629 df-gdiv 27630 df-ablo 27679 df-vc 27694 df-nv 27727 df-va 27730 df-ba 27731 df-sm 27732 df-0v 27733 df-vs 27734 df-nmcv 27735 df-ims 27736 df-dip 27836 df-ph 27948 |
This theorem is referenced by: siilem1 27986 ip2eqi 27992 |
Copyright terms: Public domain | W3C validator |