MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdi Structured version   Visualization version   GIF version

Theorem dipdi 27999
Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1 𝑋 = (BaseSet‘𝑈)
dipdir.2 𝐺 = ( +𝑣𝑈)
dipdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipdi ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))

Proof of Theorem dipdi
StepHypRef Expression
1 id 22 . . 3 ((𝐶𝑋𝐵𝑋𝐴𝑋) → (𝐶𝑋𝐵𝑋𝐴𝑋))
213com13 1118 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐶𝑋𝐵𝑋𝐴𝑋))
3 id 22 . . . . . 6 ((𝐵𝑋𝐶𝑋𝐴𝑋) → (𝐵𝑋𝐶𝑋𝐴𝑋))
433com12 1117 . . . . 5 ((𝐶𝑋𝐵𝑋𝐴𝑋) → (𝐵𝑋𝐶𝑋𝐴𝑋))
5 dipdir.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 dipdir.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
7 dipdir.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dipdir 27998 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋𝐴𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))
94, 8sylan2 492 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))
109fveq2d 6348 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))))
11 phnv 27970 . . . 4 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
12 simpl 474 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → 𝑈 ∈ NrmCVec)
135, 6nvgcl 27776 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐺𝐶) ∈ 𝑋)
14133com23 1120 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐵𝑋) → (𝐵𝐺𝐶) ∈ 𝑋)
15143adant3r3 1197 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐺𝐶) ∈ 𝑋)
16 simpr3 1235 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → 𝐴𝑋)
175, 7dipcj 27870 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐶) ∈ 𝑋𝐴𝑋) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
1812, 15, 16, 17syl3anc 1473 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
1911, 18sylan 489 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
205, 7dipcl 27868 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
21203adant3r1 1195 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝑃𝐴) ∈ ℂ)
225, 7dipcl 27868 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋) → (𝐶𝑃𝐴) ∈ ℂ)
23223adant3r2 1196 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐶𝑃𝐴) ∈ ℂ)
2421, 23cjaddd 14151 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))))
255, 7dipcj 27870 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵))
26253adant3r1 1195 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵))
275, 7dipcj 27870 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶))
28273adant3r2 1196 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶))
2926, 28oveq12d 6823 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3024, 29eqtrd 2786 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3111, 30sylan 489 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3210, 19, 313eqtr3d 2794 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
332, 32sylan2 492 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  cfv 6041  (class class class)co 6805  cc 10118   + caddc 10123  ccj 14027  NrmCVeccnv 27740   +𝑣 cpv 27741  BaseSetcba 27742  ·𝑖OLDcdip 27856  CPreHilOLDccphlo 27968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-grpo 27648  df-gid 27649  df-ginv 27650  df-ablo 27700  df-vc 27715  df-nv 27748  df-va 27751  df-ba 27752  df-sm 27753  df-0v 27754  df-nmcv 27756  df-dip 27857  df-ph 27969
This theorem is referenced by:  ip2dii  28000
  Copyright terms: Public domain W3C validator