MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipcn Structured version   Visualization version   GIF version

Theorem dipcn 27915
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipcn.p 𝑃 = (·𝑖OLD𝑈)
dipcn.c 𝐶 = (IndMet‘𝑈)
dipcn.j 𝐽 = (MetOpen‘𝐶)
dipcn.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dipcn (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))

Proof of Theorem dipcn
Dummy variables 𝑥 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2771 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2771 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2771 . . 3 (normCV𝑈) = (normCV𝑈)
5 dipcn.p . . 3 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5dipfval 27897 . 2 (𝑈 ∈ NrmCVec → 𝑃 = (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)))
7 dipcn.c . . . . 5 𝐶 = (IndMet‘𝑈)
81, 7imsxmet 27887 . . . 4 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
9 dipcn.j . . . . 5 𝐽 = (MetOpen‘𝐶)
109mopntopon 22464 . . . 4 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
118, 10syl 17 . . 3 (𝑈 ∈ NrmCVec → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
12 dipcn.k . . . 4 𝐾 = (TopOpen‘ℂfld)
13 fzfid 12980 . . . 4 (𝑈 ∈ NrmCVec → (1...4) ∈ Fin)
1411adantr 466 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1512cnfldtopon 22806 . . . . . . 7 𝐾 ∈ (TopOn‘ℂ)
1615a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝐾 ∈ (TopOn‘ℂ))
17 ax-icn 10201 . . . . . . 7 i ∈ ℂ
18 elfznn 12577 . . . . . . . . 9 (𝑘 ∈ (1...4) → 𝑘 ∈ ℕ)
1918adantl 467 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ)
2019nnnn0d 11558 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → 𝑘 ∈ ℕ0)
21 expcl 13085 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
2217, 20, 21sylancr 575 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (i↑𝑘) ∈ ℂ)
2314, 14, 16, 22cnmpt2c 21694 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (i↑𝑘)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
2414, 14cnmpt1st 21692 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2514, 14cnmpt2nd 21693 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
267, 9, 3, 12smcn 27893 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2726adantr 466 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( ·𝑠OLD𝑈) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
2814, 14, 23, 25, 27cnmpt22f 21699 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘)( ·𝑠OLD𝑈)𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
297, 9, 2vacn 27889 . . . . . . . . 9 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3029adantr 466 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → ( +𝑣𝑈) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3114, 14, 24, 28, 30cnmpt22f 21699 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
324, 7, 9, 12nmcnc 27891 . . . . . . . 8 (𝑈 ∈ NrmCVec → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3332adantr 466 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (normCV𝑈) ∈ (𝐽 Cn 𝐾))
3414, 14, 31, 33cnmpt21f 21696 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3512sqcn 22897 . . . . . . 7 (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾)
3635a1i 11 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑧 ∈ ℂ ↦ (𝑧↑2)) ∈ (𝐾 Cn 𝐾))
37 oveq1 6803 . . . . . 6 (𝑧 = ((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦))) → (𝑧↑2) = (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))
3814, 14, 34, 16, 36, 37cnmpt21 21695 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
3912mulcn 22890 . . . . . 6 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4039a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4114, 14, 23, 38, 40cnmpt22f 21699 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ (1...4)) → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ ((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4212, 11, 13, 11, 41fsum2cn 22894 . . 3 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
4315a1i 11 . . 3 (𝑈 ∈ NrmCVec → 𝐾 ∈ (TopOn‘ℂ))
44 4cn 11304 . . . . 5 4 ∈ ℂ
45 4ne0 11323 . . . . 5 4 ≠ 0
4612divccn 22896 . . . . 5 ((4 ∈ ℂ ∧ 4 ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
4744, 45, 46mp2an 672 . . . 4 (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾)
4847a1i 11 . . 3 (𝑈 ∈ NrmCVec → (𝑧 ∈ ℂ ↦ (𝑧 / 4)) ∈ (𝐾 Cn 𝐾))
49 oveq1 6803 . . 3 (𝑧 = Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) → (𝑧 / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4))
5011, 11, 42, 43, 48, 49cnmpt21 21695 . 2 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈), 𝑦 ∈ (BaseSet‘𝑈) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑈)‘(𝑥( +𝑣𝑈)((i↑𝑘)( ·𝑠OLD𝑈)𝑦)))↑2)) / 4)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
516, 50eqeltrd 2850 1 (𝑈 ∈ NrmCVec → 𝑃 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cmpt 4864  cfv 6030  (class class class)co 6796  cmpt2 6798  cc 10140  0cc0 10142  1c1 10143  ici 10144   · cmul 10147   / cdiv 10890  cn 11226  2c2 11276  4c4 11278  0cn0 11499  ...cfz 12533  cexp 13067  Σcsu 14624  TopOpenctopn 16290  ∞Metcxmt 19946  MetOpencmopn 19951  fldccnfld 19961  TopOnctopon 20935   Cn ccn 21249   ×t ctx 21584  NrmCVeccnv 27779   +𝑣 cpv 27780  BaseSetcba 27781   ·𝑠OLD cns 27782  normCVcnmcv 27785  IndMetcims 27786  ·𝑖OLDcdip 27895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-dip 27896
This theorem is referenced by:  ipasslem7  28031  occllem  28502
  Copyright terms: Public domain W3C validator