Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Visualization version   GIF version

Theorem diophrex 37841
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑁,𝑢   𝑡,𝑆,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑡)

Proof of Theorem diophrex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2764 . . . . 5 (𝑎 = 𝑡 → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑏 ↾ (1...𝑁))))
21rexbidv 3190 . . . 4 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁))))
3 reseq1 5545 . . . . . 6 (𝑏 = 𝑢 → (𝑏 ↾ (1...𝑁)) = (𝑢 ↾ (1...𝑁)))
43eqeq2d 2770 . . . . 5 (𝑏 = 𝑢 → (𝑡 = (𝑏 ↾ (1...𝑁)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
54cbvrexv 3311 . . . 4 (∃𝑏𝑆 𝑡 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁)))
62, 5syl6bb 276 . . 3 (𝑎 = 𝑡 → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))))
76cbvabv 2885 . 2 {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))}
8 rexeq 3278 . . . . . 6 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → (∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))))
98abbidv 2879 . . . . 5 (𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)} → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
109adantl 473 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))})
11 eqeq1 2764 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 = (𝑒 ↾ (1...𝑀)) ↔ 𝑏 = (𝑒 ↾ (1...𝑀))))
1211anbi1d 743 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1312rexbidv 3190 . . . . . . . . 9 (𝑑 = 𝑏 → (∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)))
1413rexab 3510 . . . . . . . 8 (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
15 r19.41v 3227 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
1615exbii 1923 . . . . . . . . 9 (∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
17 rexcom4 3365 . . . . . . . . . 10 (∃𝑒 ∈ (ℕ0𝑚 ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))))
18 anass 684 . . . . . . . . . . . . . 14 (((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
1918exbii 1923 . . . . . . . . . . . . 13 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))))
20 vex 3343 . . . . . . . . . . . . . . 15 𝑒 ∈ V
2120resex 5601 . . . . . . . . . . . . . 14 (𝑒 ↾ (1...𝑀)) ∈ V
22 reseq1 5545 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑏 ↾ (1...𝑁)) = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))
2322eqeq2d 2770 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒 ↾ (1...𝑀)) → (𝑎 = (𝑏 ↾ (1...𝑁)) ↔ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2423anbi2d 742 . . . . . . . . . . . . . 14 (𝑏 = (𝑒 ↾ (1...𝑀)) → (((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)))))
2521, 24ceqsexv 3382 . . . . . . . . . . . . 13 (∃𝑏(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ ((𝑐𝑒) = 0 ∧ 𝑎 = (𝑏 ↾ (1...𝑁)))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
2619, 25bitri 264 . . . . . . . . . . . 12 (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))))
27 ancom 465 . . . . . . . . . . . . 13 (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0))
28 simpl2 1230 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → 𝑀 ∈ (ℤ𝑁))
29 fzss2 12574 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
30 resabs1 5585 . . . . . . . . . . . . . . . 16 ((1...𝑁) ⊆ (1...𝑀) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3128, 29, 303syl 18 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑒 ↾ (1...𝑁)))
3231eqeq2d 2770 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ↔ 𝑎 = (𝑒 ↾ (1...𝑁))))
3332anbi1d 743 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → ((𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3427, 33syl5bb 272 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (((𝑐𝑒) = 0 ∧ 𝑎 = ((𝑒 ↾ (1...𝑀)) ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3526, 34syl5bb 272 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ (𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3635rexbidv 3190 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑒 ∈ (ℕ0𝑚 ℕ)∃𝑏((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3717, 36syl5bbr 274 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏𝑒 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3816, 37syl5bbr 274 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏(∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0) ∧ 𝑎 = (𝑏 ↾ (1...𝑁))) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
3914, 38syl5bb 272 . . . . . . 7 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → (∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁)) ↔ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)))
4039abbidv 2879 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} = {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)})
41 eldioph3 37831 . . . . . . 7 ((𝑁 ∈ ℕ0𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
42413ad2antl1 1201 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑎 = (𝑒 ↾ (1...𝑁)) ∧ (𝑐𝑒) = 0)} ∈ (Dioph‘𝑁))
4340, 42eqeltrd 2839 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4443adantr 472 . . . 4 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏 ∈ {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
4510, 44eqeltrd 2839 . . 3 ((((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) ∧ 𝑐 ∈ (mzPoly‘ℕ)) ∧ 𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
46 eldioph3b 37830 . . . . 5 (𝑆 ∈ (Dioph‘𝑀) ↔ (𝑀 ∈ ℕ0 ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)}))
4746simprbi 483 . . . 4 (𝑆 ∈ (Dioph‘𝑀) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
48473ad2ant3 1130 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → ∃𝑐 ∈ (mzPoly‘ℕ)𝑆 = {𝑑 ∣ ∃𝑒 ∈ (ℕ0𝑚 ℕ)(𝑑 = (𝑒 ↾ (1...𝑀)) ∧ (𝑐𝑒) = 0)})
4945, 48r19.29a 3216 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑎 ∣ ∃𝑏𝑆 𝑎 = (𝑏 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
507, 49syl5eqelr 2844 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wrex 3051  wss 3715  cres 5268  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  0cc0 10128  1c1 10129  cn 11212  0cn0 11484  cuz 11879  ...cfz 12519  mzPolycmzp 37787  Diophcdioph 37820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312  df-mzpcl 37788  df-mzp 37789  df-dioph 37821
This theorem is referenced by:  rexrabdioph  37860
  Copyright terms: Public domain W3C validator