Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophren Structured version   Visualization version   GIF version

Theorem diophren 37796
 Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
diophren ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
Distinct variable groups:   𝑆,𝑎   𝑀,𝑎   𝑁,𝑎   𝐹,𝑎

Proof of Theorem diophren
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11499 . . . . . 6 ℤ ∈ V
2 difexg 4916 . . . . . 6 (ℤ ∈ V → (ℤ ∖ ℕ) ∈ V)
31, 2ax-mp 5 . . . . 5 (ℤ ∖ ℕ) ∈ V
4 ominf 8288 . . . . . 6 ¬ ω ∈ Fin
5 nnuz 11837 . . . . . . . . . 10 ℕ = (ℤ‘1)
6 0p1e1 11245 . . . . . . . . . . 11 (0 + 1) = 1
76fveq2i 6307 . . . . . . . . . 10 (ℤ‘(0 + 1)) = (ℤ‘1)
85, 7eqtr4i 2749 . . . . . . . . 9 ℕ = (ℤ‘(0 + 1))
98difeq2i 3833 . . . . . . . 8 (ℤ ∖ ℕ) = (ℤ ∖ (ℤ‘(0 + 1)))
10 0z 11501 . . . . . . . . 9 0 ∈ ℤ
11 lzenom 37752 . . . . . . . . 9 (0 ∈ ℤ → (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω)
1210, 11ax-mp 5 . . . . . . . 8 (ℤ ∖ (ℤ‘(0 + 1))) ≈ ω
139, 12eqbrtri 4781 . . . . . . 7 (ℤ ∖ ℕ) ≈ ω
14 enfi 8292 . . . . . . 7 ((ℤ ∖ ℕ) ≈ ω → ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin))
1513, 14ax-mp 5 . . . . . 6 ((ℤ ∖ ℕ) ∈ Fin ↔ ω ∈ Fin)
164, 15mtbir 312 . . . . 5 ¬ (ℤ ∖ ℕ) ∈ Fin
17 incom 3913 . . . . . 6 ((ℤ ∖ ℕ) ∩ ℕ) = (ℕ ∩ (ℤ ∖ ℕ))
18 disjdif 4148 . . . . . 6 (ℕ ∩ (ℤ ∖ ℕ)) = ∅
1917, 18eqtri 2746 . . . . 5 ((ℤ ∖ ℕ) ∩ ℕ) = ∅
203, 16, 19eldioph4b 37794 . . . 4 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
21 simpr 479 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → 𝑎 ∈ (ℕ0𝑚 (1...𝑀)))
22 simp-4r 827 . . . . . . . . . . . 12 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → 𝐹:(1...𝑁)⟶(1...𝑀))
23 ovex 6793 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
2423mapco2 37697 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)))
2521, 22, 24syl2anc 696 . . . . . . . . . . 11 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → (𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)))
26 uneq1 3868 . . . . . . . . . . . . . . 15 (𝑐 = (𝑎𝐹) → (𝑐𝑑) = ((𝑎𝐹) ∪ 𝑑))
2726fveq2d 6308 . . . . . . . . . . . . . 14 (𝑐 = (𝑎𝐹) → (𝑏‘(𝑐𝑑)) = (𝑏‘((𝑎𝐹) ∪ 𝑑)))
2827eqeq1d 2726 . . . . . . . . . . . . 13 (𝑐 = (𝑎𝐹) → ((𝑏‘(𝑐𝑑)) = 0 ↔ (𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
2928rexbidv 3154 . . . . . . . . . . . 12 (𝑐 = (𝑎𝐹) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
3029elrab3 3470 . . . . . . . . . . 11 ((𝑎𝐹) ∈ (ℕ0𝑚 (1...𝑁)) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
3125, 30syl 17 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0))
32 simp-5r 831 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
33 simplr 809 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑎 ∈ (ℕ0𝑚 (1...𝑀)))
34 simpr 479 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)))
35 coundi 5749 . . . . . . . . . . . . . . . 16 ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))))
36 coundir 5750 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ (𝑑𝐹))
37 elmapi 7996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
38373ad2ant3 1127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑑:(ℤ ∖ ℕ)⟶ℕ0)
39 simp1 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝐹:(1...𝑁)⟶(1...𝑀))
40 incom 3913 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ((1...𝑀) ∩ (ℤ ∖ ℕ))
41 fz1ssnn 12486 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...𝑀) ⊆ ℕ
42 ssdisj 4134 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1...𝑀) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅)
4341, 18, 42mp2an 710 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅
4440, 43eqtri 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅
4544a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅)
46 coeq0i 37735 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑:(ℤ ∖ ℕ)⟶ℕ0𝐹:(1...𝑁)⟶(1...𝑀) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑀)) = ∅) → (𝑑𝐹) = ∅)
4738, 39, 45, 46syl3anc 1439 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑑𝐹) = ∅)
4847uneq2d 3875 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ (𝑑𝐹)) = ((𝑎𝐹) ∪ ∅))
4936, 48syl5eq 2770 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = ((𝑎𝐹) ∪ ∅))
50 un0 4075 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐹) ∪ ∅) = (𝑎𝐹)
5149, 50syl6eq 2774 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ 𝐹) = (𝑎𝐹))
52 coundir 5750 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))))
53 elmapi 7996 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (ℕ0𝑚 (1...𝑀)) → 𝑎:(1...𝑀)⟶ℕ0)
54533ad2ant2 1126 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → 𝑎:(1...𝑀)⟶ℕ0)
55 f1oi 6287 . . . . . . . . . . . . . . . . . . . . . . 23 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ)
56 f1of 6250 . . . . . . . . . . . . . . . . . . . . . . 23 (( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)–1-1-onto→(ℤ ∖ ℕ) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
5755, 56ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ)
58 coeq0i 37735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎:(1...𝑀)⟶ℕ0 ∧ ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ ((1...𝑀) ∩ (ℤ ∖ ℕ)) = ∅) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
5957, 43, 58mp3an23 1529 . . . . . . . . . . . . . . . . . . . . 21 (𝑎:(1...𝑀)⟶ℕ0 → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
6054, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) = ∅)
61 coires1 5766 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = (𝑑 ↾ (ℤ ∖ ℕ))
62 ffn 6158 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑:(ℤ ∖ ℕ)⟶ℕ0𝑑 Fn (ℤ ∖ ℕ))
63 fnresdm 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 Fn (ℤ ∖ ℕ) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6437, 62, 633syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → (𝑑 ↾ (ℤ ∖ ℕ)) = 𝑑)
6561, 64syl5eq 2770 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
66653ad2ant3 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
6760, 66uneq12d 3876 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎 ∘ ( I ↾ (ℤ ∖ ℕ))) ∪ (𝑑 ∘ ( I ↾ (ℤ ∖ ℕ)))) = (∅ ∪ 𝑑))
6852, 67syl5eq 2770 . . . . . . . . . . . . . . . . . 18 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = (∅ ∪ 𝑑))
69 uncom 3865 . . . . . . . . . . . . . . . . . . 19 (∅ ∪ 𝑑) = (𝑑 ∪ ∅)
70 un0 4075 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∪ ∅) = 𝑑
7169, 70eqtri 2746 . . . . . . . . . . . . . . . . . 18 (∅ ∪ 𝑑) = 𝑑
7268, 71syl6eq 2774 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ))) = 𝑑)
7351, 72uneq12d 3876 . . . . . . . . . . . . . . . 16 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (((𝑎𝑑) ∘ 𝐹) ∪ ((𝑎𝑑) ∘ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝐹) ∪ 𝑑))
7435, 73syl5req 2771 . . . . . . . . . . . . . . 15 ((𝐹:(1...𝑁)⟶(1...𝑀) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7532, 33, 34, 74syl3anc 1439 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑎𝐹) ∪ 𝑑) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
7675fveq2d 6308 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
77 nn0ssz 11511 . . . . . . . . . . . . . . . . 17 0 ⊆ ℤ
78 mapss 8017 . . . . . . . . . . . . . . . . 17 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
791, 77, 78mp2an 710 . . . . . . . . . . . . . . . 16 (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ⊆ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀)))
8043reseq2i 5500 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑎 ↾ ∅)
81 res0 5507 . . . . . . . . . . . . . . . . . . 19 (𝑎 ↾ ∅) = ∅
8280, 81eqtri 2746 . . . . . . . . . . . . . . . . . 18 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8343reseq2i 5500 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ∅)
84 res0 5507 . . . . . . . . . . . . . . . . . . 19 (𝑑 ↾ ∅) = ∅
8583, 84eqtri 2746 . . . . . . . . . . . . . . . . . 18 (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = ∅
8682, 85eqtr4i 2749 . . . . . . . . . . . . . . . . 17 (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))
87 elmapresaun 37753 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((1...𝑀) ∪ (ℤ ∖ ℕ))))
88 uncom 3865 . . . . . . . . . . . . . . . . . . 19 ((1...𝑀) ∪ (ℤ ∖ ℕ)) = ((ℤ ∖ ℕ) ∪ (1...𝑀))
8988oveq2i 6776 . . . . . . . . . . . . . . . . . 18 (ℕ0𝑚 ((1...𝑀) ∪ (ℤ ∖ ℕ))) = (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀)))
9087, 89syl6eleq 2813 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ)) ∧ (𝑎 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ))) = (𝑑 ↾ ((1...𝑀) ∩ (ℤ ∖ ℕ)))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9186, 90mp3an3 1526 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℕ0𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9279, 91sseldi 3707 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
9392adantll 752 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))))
94 coeq1 5387 . . . . . . . . . . . . . . . 16 (𝑒 = (𝑎𝑑) → (𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))) = ((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))
9594fveq2d 6308 . . . . . . . . . . . . . . 15 (𝑒 = (𝑎𝑑) → (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
96 eqid 2724 . . . . . . . . . . . . . . 15 (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) = (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
97 fvex 6314 . . . . . . . . . . . . . . 15 (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))) ∈ V
9895, 96, 97fvmpt 6396 . . . . . . . . . . . . . 14 ((𝑎𝑑) ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) → ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
9993, 98syl 17 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = (𝑏‘((𝑎𝑑) ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))
10076, 99eqtr4d 2761 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → (𝑏‘((𝑎𝐹) ∪ 𝑑)) = ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)))
101100eqeq1d 2726 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) ∧ 𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))) → ((𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
102101rexbidva 3151 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → (∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘((𝑎𝐹) ∪ 𝑑)) = 0 ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
10331, 102bitrd 268 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) ∧ 𝑎 ∈ (ℕ0𝑚 (1...𝑀))) → ((𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} ↔ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0))
104103rabbidva 3292 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0})
105 simplll 815 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑀 ∈ ℕ0)
106 ovex 6793 . . . . . . . . . . . 12 (1...𝑀) ∈ V
1073, 106unex 7073 . . . . . . . . . . 11 ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V
108107a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → ((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V)
109 simpr 479 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))))
11057a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ))
111 id 22 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → 𝐹:(1...𝑁)⟶(1...𝑀))
112 incom 3913 . . . . . . . . . . . . . . 15 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ((1...𝑁) ∩ (ℤ ∖ ℕ))
113 fz1ssnn 12486 . . . . . . . . . . . . . . . 16 (1...𝑁) ⊆ ℕ
114 ssdisj 4134 . . . . . . . . . . . . . . . 16 (((1...𝑁) ⊆ ℕ ∧ (ℕ ∩ (ℤ ∖ ℕ)) = ∅) → ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅)
115113, 18, 114mp2an 710 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (ℤ ∖ ℕ)) = ∅
116112, 115eqtri 2746 . . . . . . . . . . . . . 14 ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅
117116a1i 11 . . . . . . . . . . . . 13 (𝐹:(1...𝑁)⟶(1...𝑀) → ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅)
118 fun 6179 . . . . . . . . . . . . 13 (((( I ↾ (ℤ ∖ ℕ)):(ℤ ∖ ℕ)⟶(ℤ ∖ ℕ) ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) ∧ ((ℤ ∖ ℕ) ∩ (1...𝑁)) = ∅) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
119110, 111, 117, 118syl21anc 1438 . . . . . . . . . . . 12 (𝐹:(1...𝑁)⟶(1...𝑀) → (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
120 uncom 3865 . . . . . . . . . . . . 13 (( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹) = (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))
121120feq1i 6149 . . . . . . . . . . . 12 ((( I ↾ (ℤ ∖ ℕ)) ∪ 𝐹):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)) ↔ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
122119, 121sylib 208 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶(1...𝑀) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
123122ad3antlr 769 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀)))
124 mzprename 37731 . . . . . . . . . 10 ((((ℤ ∖ ℕ) ∪ (1...𝑀)) ∈ V ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁))) ∧ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))):((ℤ ∖ ℕ) ∪ (1...𝑁))⟶((ℤ ∖ ℕ) ∪ (1...𝑀))) → (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
125108, 109, 123, 124syl3anc 1439 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀))))
1263, 16, 19eldioph4i 37795 . . . . . . . . 9 ((𝑀 ∈ ℕ0 ∧ (𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ)))))) ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑀)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
127105, 125, 126syl2anc 696 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))((𝑒 ∈ (ℤ ↑𝑚 ((ℤ ∖ ℕ) ∪ (1...𝑀))) ↦ (𝑏‘(𝑒 ∘ (𝐹 ∪ ( I ↾ (ℤ ∖ ℕ))))))‘(𝑎𝑑)) = 0} ∈ (Dioph‘𝑀))
128104, 127eqeltrd 2803 . . . . . . 7 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀))
129 eleq2 2792 . . . . . . . . 9 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ((𝑎𝐹) ∈ 𝑆 ↔ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}))
130129rabbidv 3293 . . . . . . . 8 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} = {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}})
131130eleq1d 2788 . . . . . . 7 (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → ({𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀) ↔ {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}} ∈ (Dioph‘𝑀)))
132128, 131syl5ibrcom 237 . . . . . 6 ((((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) ∧ 𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))) → (𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
133132rexlimdva 3133 . . . . 5 (((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) ∧ 𝑁 ∈ ℕ0) → (∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0} → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
134133expimpd 630 . . . 4 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑏 ∈ (mzPoly‘((ℤ ∖ ℕ) ∪ (1...𝑁)))𝑆 = {𝑐 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑑 ∈ (ℕ0𝑚 (ℤ ∖ ℕ))(𝑏‘(𝑐𝑑)) = 0}) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
13520, 134syl5bi 232 . . 3 ((𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → (𝑆 ∈ (Dioph‘𝑁) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)))
136135impcom 445 . 2 ((𝑆 ∈ (Dioph‘𝑁) ∧ (𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
1371363impb 1107 1 ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103  ∃wrex 3015  {crab 3018  Vcvv 3304   ∖ cdif 3677   ∪ cun 3678   ∩ cin 3679   ⊆ wss 3680  ∅c0 4023   class class class wbr 4760   ↦ cmpt 4837   I cid 5127   ↾ cres 5220   ∘ ccom 5222   Fn wfn 5996  ⟶wf 5997  –1-1-onto→wf1o 6000  ‘cfv 6001  (class class class)co 6765  ωcom 7182   ↑𝑚 cmap 7974   ≈ cen 8069  Fincfn 8072  0cc0 10049  1c1 10050   + caddc 10052  ℕcn 11133  ℕ0cn0 11405  ℤcz 11490  ℤ≥cuz 11800  ...cfz 12440  mzPolycmzp 37704  Diophcdioph 37737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-hash 13233  df-mzpcl 37705  df-mzp 37706  df-dioph 37738 This theorem is referenced by:  rabrenfdioph  37797
 Copyright terms: Public domain W3C validator