Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalb Structured version   Visualization version   GIF version

Theorem dihvalb 37020
Description: Value of isomorphism H for a lattice 𝐾 when 𝑋 𝑊. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihvalb.b 𝐵 = (Base‘𝐾)
dihvalb.l = (le‘𝐾)
dihvalb.h 𝐻 = (LHyp‘𝐾)
dihvalb.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihvalb.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dihvalb (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))

Proof of Theorem dihvalb
Dummy variables 𝑢 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihvalb.b . . . 4 𝐵 = (Base‘𝐾)
2 dihvalb.l . . . 4 = (le‘𝐾)
3 eqid 2752 . . . 4 (join‘𝐾) = (join‘𝐾)
4 eqid 2752 . . . 4 (meet‘𝐾) = (meet‘𝐾)
5 eqid 2752 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
6 dihvalb.h . . . 4 𝐻 = (LHyp‘𝐾)
7 dihvalb.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihvalb.d . . . 4 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 eqid 2752 . . . 4 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
10 eqid 2752 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
11 eqid 2752 . . . 4 (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊))
12 eqid 2752 . . . 4 (LSSum‘((DVecH‘𝐾)‘𝑊)) = (LSSum‘((DVecH‘𝐾)‘𝑊))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 37015 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) = if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))))
14 iftrue 4228 . . 3 (𝑋 𝑊 → if(𝑋 𝑊, (𝐷𝑋), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → 𝑢 = ((((DIsoC‘𝐾)‘𝑊)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑊))(𝐷‘(𝑋(meet‘𝐾)𝑊)))))) = (𝐷𝑋))
1513, 14sylan9eq 2806 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝑋𝐵) ∧ 𝑋 𝑊) → (𝐼𝑋) = (𝐷𝑋))
1615anasss 682 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = (𝐷𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1624  wcel 2131  wral 3042  ifcif 4222   class class class wbr 4796  cfv 6041  crio 6765  (class class class)co 6805  Basecbs 16051  lecple 16142  joincjn 17137  meetcmee 17138  LSSumclsm 18241  LSubSpclss 19126  Atomscatm 35045  LHypclh 35765  DVecHcdvh 36861  DIsoBcdib 36921  DIsoCcdic 36955  DIsoHcdih 37011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-dih 37012
This theorem is referenced by:  dihopelvalbN  37021  dih1dimb  37023  dih2dimb  37027  dih2dimbALTN  37028  dihvalcq2  37030  dihlss  37033  dihord6apre  37039  dihord3  37040  dihord5b  37042  dihord5apre  37045  dih0  37063  dihwN  37072  dihglblem3N  37078  dihmeetlem2N  37082  dih1dimatlem  37112  dihjatcclem4  37204
  Copyright terms: Public domain W3C validator