![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihordlem6 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 122 line 35. (Contributed by NM, 3-Mar-2014.) |
Ref | Expression |
---|---|
dihordlem8.b | ⊢ 𝐵 = (Base‘𝐾) |
dihordlem8.l | ⊢ ≤ = (le‘𝐾) |
dihordlem8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihordlem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihordlem8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dihordlem8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihordlem8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihordlem8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihordlem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihordlem8.s | ⊢ + = (+g‘𝑈) |
dihordlem8.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
Ref | Expression |
---|---|
dihordlem6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2r 1242 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | |
3 | simp2l 1241 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
4 | simp3 1132 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) | |
5 | dihordlem8.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
6 | dihordlem8.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | dihordlem8.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | dihordlem8.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | dihordlem8.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
10 | dihordlem8.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
11 | dihordlem8.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | dihordlem8.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | dihordlem8.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
14 | dihordlem8.s | . . 3 ⊢ + = (+g‘𝑈) | |
15 | dihordlem8.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | |
16 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdlemn6 37012 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
17 | 1, 2, 3, 4, 16 | syl121anc 1481 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 〈cop 4323 class class class wbr 4787 ↦ cmpt 4864 I cid 5157 ↾ cres 5252 ∘ ccom 5254 ‘cfv 6030 ℩crio 6756 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 lecple 16156 occoc 16157 Atomscatm 35072 HLchlt 35159 LHypclh 35793 LTrncltrn 35910 TEndoctendo 36562 DVecHcdvh 36888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-undef 7555 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35307 df-lplanes 35308 df-lvols 35309 df-lines 35310 df-psubsp 35312 df-pmap 35313 df-padd 35605 df-lhyp 35797 df-laut 35798 df-ldil 35913 df-ltrn 35914 df-trl 35969 df-tendo 36565 df-edring 36567 df-dvech 36889 |
This theorem is referenced by: dihordlem7 37024 |
Copyright terms: Public domain | W3C validator |