![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord2cN | Structured version Visualization version GIF version |
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihjust.b | ⊢ 𝐵 = (Base‘𝐾) |
dihjust.l | ⊢ ≤ = (le‘𝐾) |
dihjust.j | ⊢ ∨ = (join‘𝐾) |
dihjust.m | ⊢ ∧ = (meet‘𝐾) |
dihjust.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjust.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjust.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dihjust.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
dihjust.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjust.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihord2c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihord2c.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihord2c.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dihord2cN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) | |
2 | eqidd 2761 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑂 = 𝑂) | |
3 | simp1 1131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | simp1l 1240 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) | |
5 | hllat 35171 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
7 | simp2 1132 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑋 ∈ 𝐵) | |
8 | simp1r 1241 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) | |
9 | dihjust.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
10 | dihjust.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
11 | 9, 10 | lhpbase 35805 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
12 | 8, 11 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
13 | dihjust.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
14 | 9, 13 | latmcl 17273 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
15 | 6, 7, 12, 14 | syl3anc 1477 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
16 | dihjust.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
17 | 9, 16, 13 | latmle2 17298 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
18 | 6, 7, 12, 17 | syl3anc 1477 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
19 | dihord2c.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
20 | dihord2c.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
21 | dihord2c.o | . . . 4 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | dihjust.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
23 | 9, 16, 10, 19, 20, 21, 22 | dibopelval3 36957 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
24 | 3, 15, 18, 23 | syl12anc 1475 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
25 | 1, 2, 24 | mpbir2and 995 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 ↦ cmpt 4881 I cid 5173 ↾ cres 5268 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 lecple 16170 joincjn 17165 meetcmee 17166 Latclat 17266 LSSumclsm 18269 Atomscatm 35071 HLchlt 35158 LHypclh 35791 LTrncltrn 35908 trLctrl 35966 DVecHcdvh 36887 DIsoBcdib 36947 DIsoCcdic 36981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-lat 17267 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-lhyp 35795 df-disoa 36838 df-dib 36948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |