Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihintcl Structured version   Visualization version   GIF version

Theorem dihintcl 37133
Description: The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.)
Hypotheses
Ref Expression
dihintcl.h 𝐻 = (LHyp‘𝐾)
dihintcl.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
Assertion
Ref Expression
dihintcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)

Proof of Theorem dihintcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2 dihintcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 dihintcl.i . . . . . . . 8 𝐼 = ((DIsoH‘𝐾)‘𝑊)
41, 2, 3dihfn 37057 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn (Base‘𝐾))
51, 2, 3dihdm 37058 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = (Base‘𝐾))
65fneq2d 6141 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼 Fn dom 𝐼𝐼 Fn (Base‘𝐾)))
74, 6mpbird 247 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom 𝐼)
87adantr 472 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
9 cnvimass 5641 . . . . 5 (𝐼𝑆) ⊆ dom 𝐼
10 fnssres 6163 . . . . 5 ((𝐼 Fn dom 𝐼 ∧ (𝐼𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
118, 9, 10sylancl 697 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆))
12 fniinfv 6417 . . . 4 ((𝐼 ↾ (𝐼𝑆)) Fn (𝐼𝑆) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
1311, 12syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = ran (𝐼 ↾ (𝐼𝑆)))
14 df-ima 5277 . . . . 5 (𝐼 “ (𝐼𝑆)) = ran (𝐼 ↾ (𝐼𝑆))
154adantr 472 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn (Base‘𝐾))
16 dffn4 6280 . . . . . . 7 (𝐼 Fn (Base‘𝐾) ↔ 𝐼:(Base‘𝐾)–onto→ran 𝐼)
1715, 16sylib 208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼:(Base‘𝐾)–onto→ran 𝐼)
18 simprl 811 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼)
19 foimacnv 6313 . . . . . 6 ((𝐼:(Base‘𝐾)–onto→ran 𝐼𝑆 ⊆ ran 𝐼) → (𝐼 “ (𝐼𝑆)) = 𝑆)
2017, 18, 19syl2anc 696 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 “ (𝐼𝑆)) = 𝑆)
2114, 20syl5eqr 2806 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2221inteqd 4630 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ran (𝐼 ↾ (𝐼𝑆)) = 𝑆)
2313, 22eqtrd 2792 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑆)
24 simpl 474 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
255adantr 472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → dom 𝐼 = (Base‘𝐾))
269, 25syl5sseq 3792 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ⊆ (Base‘𝐾))
27 simprr 813 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
28 n0 4072 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
2927, 28sylib 208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ∃𝑦 𝑦𝑆)
3018sselda 3742 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦 ∈ ran 𝐼)
3125fneq2d 6141 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼 Fn dom 𝐼𝐼 Fn (Base‘𝐾)))
3215, 31mpbird 247 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼)
3332adantr 472 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐼 Fn dom 𝐼)
34 fvelrnb 6403 . . . . . . . . 9 (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3533, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦))
3630, 35mpbid 222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦)
37 fnfun 6147 . . . . . . . . . . . . . . 15 (𝐼 Fn (Base‘𝐾) → Fun 𝐼)
3815, 37syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → Fun 𝐼)
39 fvimacnv 6493 . . . . . . . . . . . . . 14 ((Fun 𝐼𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
4038, 39sylan 489 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆𝑥 ∈ (𝐼𝑆)))
41 ne0i 4062 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐼𝑆) → (𝐼𝑆) ≠ ∅)
4240, 41syl6bi 243 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅))
4342ex 449 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅)))
44 eleq1 2825 . . . . . . . . . . . . 13 ((𝐼𝑥) = 𝑦 → ((𝐼𝑥) ∈ 𝑆𝑦𝑆))
4544biimprd 238 . . . . . . . . . . . 12 ((𝐼𝑥) = 𝑦 → (𝑦𝑆 → (𝐼𝑥) ∈ 𝑆))
4645imim1d 82 . . . . . . . . . . 11 ((𝐼𝑥) = 𝑦 → (((𝐼𝑥) ∈ 𝑆 → (𝐼𝑆) ≠ ∅) → (𝑦𝑆 → (𝐼𝑆) ≠ ∅)))
4743, 46syl9 77 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((𝐼𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦𝑆 → (𝐼𝑆) ≠ ∅))))
4847com24 95 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝑦𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))))
4948imp 444 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅)))
5049rexlimdv 3166 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = 𝑦 → (𝐼𝑆) ≠ ∅))
5136, 50mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (𝐼𝑆) ≠ ∅)
5229, 51exlimddv 2010 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼𝑆) ≠ ∅)
53 eqid 2758 . . . . . 6 (glb‘𝐾) = (glb‘𝐾)
541, 53, 2, 3dihglb 37130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑆) ⊆ (Base‘𝐾) ∧ (𝐼𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
5524, 26, 52, 54syl12anc 1475 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦))
56 fvres 6366 . . . . 5 (𝑦 ∈ (𝐼𝑆) → ((𝐼 ↾ (𝐼𝑆))‘𝑦) = (𝐼𝑦))
5756iineq2i 4690 . . . 4 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) = 𝑦 ∈ (𝐼𝑆)(𝐼𝑦)
5855, 57syl6eqr 2810 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) = 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦))
59 hlclat 35146 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
6059ad2antrr 764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝐾 ∈ CLat)
611, 53clatglbcl 17313 . . . . 5 ((𝐾 ∈ CLat ∧ (𝐼𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
6260, 26, 61syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾))
631, 2, 3dihcl 37059 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((glb‘𝐾)‘(𝐼𝑆)) ∈ (Base‘𝐾)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
6462, 63syldan 488 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(𝐼𝑆))) ∈ ran 𝐼)
6558, 64eqeltrrd 2838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑦 ∈ (𝐼𝑆)((𝐼 ↾ (𝐼𝑆))‘𝑦) ∈ ran 𝐼)
6623, 65eqeltrrd 2838 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆 ⊆ ran 𝐼𝑆 ≠ ∅)) → 𝑆 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wex 1851  wcel 2137  wne 2930  wrex 3049  wss 3713  c0 4056   cint 4625   ciin 4671  ccnv 5263  dom cdm 5264  ran crn 5265  cres 5266  cima 5267  Fun wfun 6041   Fn wfn 6042  ontowfo 6045  cfv 6047  Basecbs 16057  glbcglb 17142  CLatccla 17306  HLchlt 35138  LHypclh 35771  DIsoHcdih 37017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-riotaBAD 34740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-tpos 7519  df-undef 7566  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-sca 16157  df-vsca 16158  df-0g 16302  df-preset 17127  df-poset 17145  df-plt 17157  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-p0 17238  df-p1 17239  df-lat 17245  df-clat 17307  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-grp 17624  df-minusg 17625  df-sbg 17626  df-subg 17790  df-cntz 17948  df-lsm 18249  df-cmn 18393  df-abl 18394  df-mgp 18688  df-ur 18700  df-ring 18747  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-dvr 18881  df-drng 18949  df-lmod 19065  df-lss 19133  df-lsp 19172  df-lvec 19303  df-lsatoms 34764  df-oposet 34964  df-ol 34966  df-oml 34967  df-covers 35054  df-ats 35055  df-atl 35086  df-cvlat 35110  df-hlat 35139  df-llines 35285  df-lplanes 35286  df-lvols 35287  df-lines 35288  df-psubsp 35290  df-pmap 35291  df-padd 35583  df-lhyp 35775  df-laut 35776  df-ldil 35891  df-ltrn 35892  df-trl 35947  df-tendo 36543  df-edring 36545  df-disoa 36818  df-dvech 36868  df-dib 36928  df-dic 36962  df-dih 37018
This theorem is referenced by:  doch2val2  37153  dochocss  37155
  Copyright terms: Public domain W3C validator