![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihcnvord | Structured version Visualization version GIF version |
Description: Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014.) |
Ref | Expression |
---|---|
dihcnvord.l | ⊢ ≤ = (le‘𝐾) |
dihcnvord.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihcnvord.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihcnvord.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihcnvord.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
dihcnvord.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dihcnvord | ⊢ (𝜑 → ((◡𝐼‘𝑋) ≤ (◡𝐼‘𝑌) ↔ 𝑋 ⊆ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihcnvord.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihcnvord.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
3 | eqid 2770 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | dihcnvord.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihcnvord.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | 3, 4, 5 | dihcnvcl 37074 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
7 | 1, 2, 6 | syl2anc 565 | . . 3 ⊢ (𝜑 → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
8 | dihcnvord.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
9 | 3, 4, 5 | dihcnvcl 37074 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (◡𝐼‘𝑌) ∈ (Base‘𝐾)) |
10 | 1, 8, 9 | syl2anc 565 | . . 3 ⊢ (𝜑 → (◡𝐼‘𝑌) ∈ (Base‘𝐾)) |
11 | dihcnvord.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
12 | 3, 11, 4, 5 | dihord 37067 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾) ∧ (◡𝐼‘𝑌) ∈ (Base‘𝐾)) → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘(◡𝐼‘𝑌)) ↔ (◡𝐼‘𝑋) ≤ (◡𝐼‘𝑌))) |
13 | 1, 7, 10, 12 | syl3anc 1475 | . 2 ⊢ (𝜑 → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘(◡𝐼‘𝑌)) ↔ (◡𝐼‘𝑋) ≤ (◡𝐼‘𝑌))) |
14 | 4, 5 | dihcnvid2 37076 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
15 | 1, 2, 14 | syl2anc 565 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
16 | 4, 5 | dihcnvid2 37076 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
17 | 1, 8, 16 | syl2anc 565 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
18 | 15, 17 | sseq12d 3781 | . 2 ⊢ (𝜑 → ((𝐼‘(◡𝐼‘𝑋)) ⊆ (𝐼‘(◡𝐼‘𝑌)) ↔ 𝑋 ⊆ 𝑌)) |
19 | 13, 18 | bitr3d 270 | 1 ⊢ (𝜑 → ((◡𝐼‘𝑋) ≤ (◡𝐼‘𝑌) ↔ 𝑋 ⊆ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 ◡ccnv 5248 ran crn 5250 ‘cfv 6031 Basecbs 16063 lecple 16155 HLchlt 35152 LHypclh 35785 DIsoHcdih 37031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-riotaBAD 34754 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-undef 7550 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-0g 16309 df-preset 17135 df-poset 17153 df-plt 17165 df-lub 17181 df-glb 17182 df-join 17183 df-meet 17184 df-p0 17246 df-p1 17247 df-lat 17253 df-clat 17315 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-subg 17798 df-cntz 17956 df-lsm 18257 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-dvr 18890 df-drng 18958 df-lmod 19074 df-lss 19142 df-lsp 19184 df-lvec 19315 df-oposet 34978 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-atl 35100 df-cvlat 35124 df-hlat 35153 df-llines 35299 df-lplanes 35300 df-lvols 35301 df-lines 35302 df-psubsp 35304 df-pmap 35305 df-padd 35597 df-lhyp 35789 df-laut 35790 df-ldil 35905 df-ltrn 35906 df-trl 35961 df-tendo 36557 df-edring 36559 df-disoa 36832 df-dvech 36882 df-dib 36942 df-dic 36976 df-dih 37032 |
This theorem is referenced by: dihoml4c 37179 djhcvat42 37218 |
Copyright terms: Public domain | W3C validator |