Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv Structured version   Visualization version   GIF version

Theorem dihatexv 37129
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
Hypotheses
Ref Expression
dihatexv.b 𝐵 = (Base‘𝐾)
dihatexv.a 𝐴 = (Atoms‘𝐾)
dihatexv.h 𝐻 = (LHyp‘𝐾)
dihatexv.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihatexv.v 𝑉 = (Base‘𝑈)
dihatexv.o 0 = (0g𝑈)
dihatexv.n 𝑁 = (LSpan‘𝑈)
dihatexv.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihatexv.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihatexv.q (𝜑𝑄𝐵)
Assertion
Ref Expression
dihatexv (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝑈(𝑥)   𝐻(𝑥)   0 (𝑥)

Proof of Theorem dihatexv
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihatexv.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21ad2antrr 764 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simplr 809 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
4 simpr 479 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → 𝑄(le‘𝐾)𝑊)
5 dihatexv.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
6 eqid 2760 . . . . . . . . 9 (le‘𝐾) = (le‘𝐾)
7 dihatexv.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 dihatexv.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2760 . . . . . . . . 9 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2760 . . . . . . . . 9 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
11 dihatexv.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 dihatexv.i . . . . . . . . 9 𝐼 = ((DIsoH‘𝐾)‘𝑊)
13 dihatexv.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
145, 6, 7, 8, 9, 10, 11, 12, 13dih1dimb2 37032 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴𝑄(le‘𝐾)𝑊)) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
152, 3, 4, 14syl12anc 1475 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
161ad3antrrr 768 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))
18 eqid 2760 . . . . . . . . . . . . . 14 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
195, 8, 9, 18, 10tendo0cl 36580 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
2016, 19syl 17 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))
21 dihatexv.v . . . . . . . . . . . . 13 𝑉 = (Base‘𝑈)
228, 9, 18, 11, 21dvhelvbasei 36879 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
2316, 17, 20, 22syl12anc 1475 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉)
24 sneq 4331 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → {𝑥} = {⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})
2524fveq2d 6356 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}))
2625eqeq2d 2770 . . . . . . . . . . . 12 (𝑥 = ⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ → ((𝐼𝑄) = (𝑁‘{𝑥}) ↔ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})))
2726rspcev 3449 . . . . . . . . . . 11 ((⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2823, 27sylan 489 . . . . . . . . . 10 (((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
2928ex 449 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩}) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3029adantld 484 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → ((𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3130rexlimdva 3169 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → (∃𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔 ≠ ( I ↾ 𝐵) ∧ (𝐼𝑄) = (𝑁‘{⟨𝑔, (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥})))
3215, 31mpd 15 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
331ad2antrr 764 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 eqid 2760 . . . . . . . . . . 11 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
356, 7, 8, 34lhpocnel2 35808 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
3633, 35syl 17 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊))
37 simplr 809 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → 𝑄𝐴)
38 simpr 479 . . . . . . . . 9 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ¬ 𝑄(le‘𝐾)𝑊)
39 eqid 2760 . . . . . . . . . 10 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄)
406, 7, 8, 9, 39ltrniotacl 36369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((oc‘𝐾)‘𝑊) ∈ 𝐴 ∧ ¬ ((oc‘𝐾)‘𝑊)(le‘𝐾)𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
4133, 36, 37, 38, 40syl112anc 1481 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊))
428, 9, 18tendoidcl 36559 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
4333, 42syl 17 . . . . . . . 8 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))
448, 9, 18, 11, 21dvhelvbasei 36879 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄) ∈ ((LTrn‘𝐾)‘𝑊) ∧ ( I ↾ ((LTrn‘𝐾)‘𝑊)) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
4533, 41, 43, 44syl12anc 1475 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉)
466, 7, 8, 34, 9, 12, 11, 13, 39dih1dimc 37033 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄(le‘𝐾)𝑊)) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
4733, 37, 38, 46syl12anc 1475 . . . . . . 7 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
48 sneq 4331 . . . . . . . . . 10 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → {𝑥} = {⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})
4948fveq2d 6356 . . . . . . . . 9 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → (𝑁‘{𝑥}) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩}))
5049eqeq2d 2770 . . . . . . . 8 (𝑥 = ⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ → ((𝐼𝑄) = (𝑁‘{𝑥}) ↔ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})))
5150rspcev 3449 . . . . . . 7 ((⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩ ∈ 𝑉 ∧ (𝐼𝑄) = (𝑁‘{⟨(𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑓‘((oc‘𝐾)‘𝑊)) = 𝑄), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩})) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5245, 47, 51syl2anc 696 . . . . . 6 (((𝜑𝑄𝐴) ∧ ¬ 𝑄(le‘𝐾)𝑊) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
5332, 52pm2.61dan 867 . . . . 5 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}))
541simpld 477 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
5554ad3antrrr 768 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ HL)
56 hlatl 35150 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
5755, 56syl 17 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝐾 ∈ AtLat)
58 simpllr 817 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴)
59 eqid 2760 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
6059, 7atn0 35098 . . . . . . . . . 10 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → 𝑄 ≠ (0.‘𝐾))
6157, 58, 60syl2anc 696 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄 ≠ (0.‘𝐾))
62 sneq 4331 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → {𝑥} = { 0 })
6362fveq2d 6356 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
64633ad2ant3 1130 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = (𝑁‘{ 0 }))
65 simp1ll 1303 . . . . . . . . . . . . . . 15 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝜑)
668, 11, 1dvhlmod 36901 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ LMod)
67 dihatexv.o . . . . . . . . . . . . . . . 16 0 = (0g𝑈)
6867, 13lspsn0 19210 . . . . . . . . . . . . . . 15 (𝑈 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
6965, 66, 683syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{ 0 }) = { 0 })
7064, 69eqtrd 2794 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝑁‘{𝑥}) = { 0 })
71 simp2 1132 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝑁‘{𝑥}))
7259, 8, 12, 11, 67dih0 37071 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
7365, 1, 723syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼‘(0.‘𝐾)) = { 0 })
7470, 71, 733eqtr4d 2804 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐼𝑄) = (𝐼‘(0.‘𝐾)))
7565, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
76 dihatexv.q . . . . . . . . . . . . . 14 (𝜑𝑄𝐵)
7765, 76syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄𝐵)
7865, 54syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL)
79 hlop 35152 . . . . . . . . . . . . . 14 (𝐾 ∈ HL → 𝐾 ∈ OP)
805, 59op0cl 34974 . . . . . . . . . . . . . 14 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
8178, 79, 803syl 18 . . . . . . . . . . . . 13 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → (0.‘𝐾) ∈ 𝐵)
825, 8, 12dih11 37056 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵 ∧ (0.‘𝐾) ∈ 𝐵) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8375, 77, 81, 82syl3anc 1477 . . . . . . . . . . . 12 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → ((𝐼𝑄) = (𝐼‘(0.‘𝐾)) ↔ 𝑄 = (0.‘𝐾)))
8474, 83mpbid 222 . . . . . . . . . . 11 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥}) ∧ 𝑥 = 0 ) → 𝑄 = (0.‘𝐾))
85843expia 1115 . . . . . . . . . 10 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑥 = 0𝑄 = (0.‘𝐾)))
8685necon3d 2953 . . . . . . . . 9 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → (𝑄 ≠ (0.‘𝐾) → 𝑥0 ))
8761, 86mpd 15 . . . . . . . 8 ((((𝜑𝑄𝐴) ∧ 𝑥𝑉) ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑥0 )
8887ex 449 . . . . . . 7 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → 𝑥0 ))
8988ancrd 578 . . . . . 6 (((𝜑𝑄𝐴) ∧ 𝑥𝑉) → ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
9089reximdva 3155 . . . . 5 ((𝜑𝑄𝐴) → (∃𝑥𝑉 (𝐼𝑄) = (𝑁‘{𝑥}) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
9153, 90mpd 15 . . . 4 ((𝜑𝑄𝐴) → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
9291ex 449 . . 3 (𝜑 → (𝑄𝐴 → ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
931ad2antrr 764 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9476ad2antrr 764 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐵)
955, 8, 12dihcnvid1 37063 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼‘(𝐼𝑄)) = 𝑄)
9693, 94, 95syl2anc 696 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = 𝑄)
97 fveq2 6352 . . . . . . . 8 ((𝐼𝑄) = (𝑁‘{𝑥}) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9897ad2antll 767 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝐼𝑄)) = (𝐼‘(𝑁‘{𝑥})))
9996, 98eqtr3d 2796 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄 = (𝐼‘(𝑁‘{𝑥})))
10066ad2antrr 764 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑈 ∈ LMod)
101 simplr 809 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥𝑉)
102 simprl 811 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑥0 )
103 eqid 2760 . . . . . . . . 9 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
10421, 13, 67, 103lsatlspsn2 34782 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑥𝑉𝑥0 ) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
105100, 101, 102, 104syl3anc 1477 . . . . . . 7 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈))
1067, 8, 11, 12, 103dihlatat 37128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑥}) ∈ (LSAtoms‘𝑈)) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10793, 105, 106syl2anc 696 . . . . . 6 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → (𝐼‘(𝑁‘{𝑥})) ∈ 𝐴)
10899, 107eqeltrd 2839 . . . . 5 (((𝜑𝑥𝑉) ∧ (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))) → 𝑄𝐴)
109108ex 449 . . . 4 ((𝜑𝑥𝑉) → ((𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
110109rexlimdva 3169 . . 3 (𝜑 → (∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})) → 𝑄𝐴))
11192, 110impbid 202 . 2 (𝜑 → (𝑄𝐴 ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥}))))
112 rexdifsn 4469 . 2 (∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥}) ↔ ∃𝑥𝑉 (𝑥0 ∧ (𝐼𝑄) = (𝑁‘{𝑥})))
113111, 112syl6bbr 278 1 (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712  {csn 4321  cop 4327   class class class wbr 4804  cmpt 4881   I cid 5173  ccnv 5265  cres 5268  cfv 6049  crio 6773  Basecbs 16059  lecple 16150  occoc 16151  0gc0g 16302  0.cp0 17238  LModclmod 19065  LSpanclspn 19173  LSAtomsclsa 34764  OPcops 34962  Atomscatm 35053  AtLatcal 35054  HLchlt 35140  LHypclh 35773  LTrncltrn 35890  TEndoctendo 36542  DVecHcdvh 36869  DIsoHcdih 37019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-undef 7568  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lvec 19305  df-lsatoms 34766  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tendo 36545  df-edring 36547  df-disoa 36820  df-dvech 36870  df-dib 36930  df-dic 36964  df-dih 37020
This theorem is referenced by:  dihatexv2  37130
  Copyright terms: Public domain W3C validator