![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dih2dimb | Structured version Visualization version GIF version |
Description: Extend dib2dim 37053 to isomorphism H. (Contributed by NM, 22-Sep-2014.) |
Ref | Expression |
---|---|
dih2dimb.l | ⊢ ≤ = (le‘𝐾) |
dih2dimb.j | ⊢ ∨ = (join‘𝐾) |
dih2dimb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dih2dimb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dih2dimb.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dih2dimb.s | ⊢ ⊕ = (LSSum‘𝑈) |
dih2dimb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dih2dimb.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dih2dimb.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) |
dih2dimb.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) |
Ref | Expression |
---|---|
dih2dimb | ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih2dimb.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | dih2dimb.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | dih2dimb.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | dih2dimb.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dih2dimb.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | dih2dimb.s | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
7 | eqid 2771 | . . 3 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
8 | dih2dimb.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | dih2dimb.p | . . 3 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) | |
10 | dih2dimb.q | . . 3 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dib2dim 37053 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ⊆ ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄))) |
12 | 8 | simpld 482 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | 9 | simpld 482 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
14 | 10 | simpld 482 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
15 | eqid 2771 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | 15, 2, 3 | hlatjcl 35175 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
17 | 12, 13, 14, 16 | syl3anc 1476 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
18 | 9 | simprd 483 | . . . 4 ⊢ (𝜑 → 𝑃 ≤ 𝑊) |
19 | 10 | simprd 483 | . . . 4 ⊢ (𝜑 → 𝑄 ≤ 𝑊) |
20 | hllat 35172 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
21 | 12, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Lat) |
22 | 15, 3 | atbase 35098 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
23 | 13, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
24 | 15, 3 | atbase 35098 | . . . . . 6 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
25 | 14, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
26 | 8 | simprd 483 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
27 | 15, 4 | lhpbase 35806 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
29 | 15, 1, 2 | latjle12 17270 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
30 | 21, 23, 25, 28, 29 | syl13anc 1478 | . . . 4 ⊢ (𝜑 → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
31 | 18, 19, 30 | mpbi2and 691 | . . 3 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ 𝑊) |
32 | dih2dimb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
33 | 15, 1, 4, 32, 7 | dihvalb 37047 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ≤ 𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
34 | 8, 17, 31, 33 | syl12anc 1474 | . 2 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
35 | 15, 1, 4, 32, 7 | dihvalb 37047 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≤ 𝑊)) → (𝐼‘𝑃) = (((DIsoB‘𝐾)‘𝑊)‘𝑃)) |
36 | 8, 23, 18, 35 | syl12anc 1474 | . . 3 ⊢ (𝜑 → (𝐼‘𝑃) = (((DIsoB‘𝐾)‘𝑊)‘𝑃)) |
37 | 15, 1, 4, 32, 7 | dihvalb 37047 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = (((DIsoB‘𝐾)‘𝑊)‘𝑄)) |
38 | 8, 25, 19, 37 | syl12anc 1474 | . . 3 ⊢ (𝜑 → (𝐼‘𝑄) = (((DIsoB‘𝐾)‘𝑊)‘𝑄)) |
39 | 36, 38 | oveq12d 6811 | . 2 ⊢ (𝜑 → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) = ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄))) |
40 | 11, 34, 39 | 3sstr4d 3797 | 1 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lecple 16156 joincjn 17152 Latclat 17253 LSSumclsm 18256 Atomscatm 35072 HLchlt 35159 LHypclh 35792 DVecHcdvh 36888 DIsoBcdib 36948 DIsoHcdih 37038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-undef 7551 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-0g 16310 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tgrp 36552 df-tendo 36564 df-edring 36566 df-dveca 36812 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dih 37039 |
This theorem is referenced by: dihjatb 37226 |
Copyright terms: Public domain | W3C validator |