Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem1 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem1 42734
Description: Lemma 1 for dignn0flhalf 42737. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem1
StepHypRef Expression
1 zre 11419 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
213ad2ant1 1102 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 2rp 11875 . . . . . . . . 9 2 ∈ ℝ+
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
5 nnz 11437 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
64, 5rpexpcld 13072 . . . . . . 7 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ+)
76rpred 11910 . . . . . 6 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ)
873ad2ant3 1104 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ)
92, 8resubcld 10496 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − (2↑𝑁)) ∈ ℝ)
1063ad2ant3 1104 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
119, 10modcld 12714 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℝ)
129, 11resubcld 10496 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
13 peano2zm 11458 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1413zred 11520 . . . . 5 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1102 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
1615, 10modcld 12714 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)
1715, 16resubcld 10496 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
18 1red 10093 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
1918, 16readdcld 10107 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
208, 11readdcld 10107 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
21 2nn 11223 . . . . . . . . . . . . . 14 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 11337 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2422, 23nnexpcld 13070 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
2524anim2i 592 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
26253adant2 1100 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
27 m1modmmod 42641 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
29 nnz 11437 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
3029a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ))
31 zcn 11420 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
32 xp1d2m1eqxm1d2 11324 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (((𝐴 + 1) / 2) − 1) = ((𝐴 − 1) / 2))
3332eqcomd 2657 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3431, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3635eleq1d 2715 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ ↔ (((𝐴 + 1) / 2) − 1) ∈ ℤ))
37 peano2z 11456 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ)
3831adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
39 1cnd 10094 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
4038, 39addcld 10097 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
4140halfcld 11315 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℂ)
4241, 39npcand 10434 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) + 1) = ((𝐴 + 1) / 2))
4342eleq1d 2715 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ ↔ ((𝐴 + 1) / 2) ∈ ℤ))
4437, 43syl5ib 234 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
4536, 44sylbid 230 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
46 mod0 12715 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
471, 6, 46syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
4822nnzd 11519 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℤ)
49 nnm1nn0 11372 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
50 zexpcl 12915 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℤ)
5148, 49, 50syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℤ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℤ)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (2↑(𝑁 − 1)) ∈ ℤ)
54 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (𝐴 / (2↑𝑁)) ∈ ℤ)
5553, 54zmulcld 11526 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ)
5655ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ))
575adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
5857zcnd 11521 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5958, 39negsubd 10436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 + -1) = (𝑁 − 1))
6059eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) = (𝑁 + -1))
6160oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) − 𝑁) = ((𝑁 + -1) − 𝑁))
6239negcld 10417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℂ)
6358, 62pncan2d 10432 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 + -1) − 𝑁) = -1)
6461, 63eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) − 𝑁) = -1)
6564oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = (2↑-1))
66 2cnd 11131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℂ)
67 2ne0 11151 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ≠ 0
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ≠ 0)
69 1zzd 11446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 1 ∈ ℤ)
705, 69zsubcld 11525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
7170, 5jca 553 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
73 expsub 12948 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
7466, 68, 72, 73syl21anc 1365 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
75 expn1 12910 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (2↑-1) = (1 / 2))
7666, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑-1) = (1 / 2))
7765, 74, 763eqtr3d 2693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) / (2↑𝑁)) = (1 / 2))
7877oveq2d 6706 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))) = (𝐴 · (1 / 2)))
79 2cnd 11131 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8079, 49expcld 13048 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℂ)
8180adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℂ)
823a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+)
8382, 57rpexpcld 13072 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
8483rpcnne0d 11919 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
85 div12 10745 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(𝑁 − 1)) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8681, 38, 84, 85syl3anc 1366 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8738, 66, 68divrecd 10842 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 2) = (𝐴 · (1 / 2)))
8878, 86, 873eqtr4d 2695 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 / 2))
8988eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ ↔ (𝐴 / 2) ∈ ℤ))
9056, 89sylibd 229 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → (𝐴 / 2) ∈ ℤ))
9147, 90sylbid 230 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → (𝐴 / 2) ∈ ℤ))
92 zeo2 11502 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9392adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9491, 93sylibd 229 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9594necon2ad 2838 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) / 2) ∈ ℤ → (𝐴 mod (2↑𝑁)) ≠ 0))
9630, 45, 953syld 60 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0))
9796ex 449 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
9897com23 86 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
99983imp 1275 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ≠ 0)
10099neneqd 2828 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ (𝐴 mod (2↑𝑁)) = 0)
101100iffalsed 4130 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1) = -1)
10228, 101eqtrd 2685 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = -1)
103 neg1lt0 11165 . . . . . . . . . 10 -1 < 0
104 2re 11128 . . . . . . . . . . . . 13 2 ∈ ℝ
105 1lt2 11232 . . . . . . . . . . . . 13 1 < 2
106 expgt1 12938 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 2) → 1 < (2↑𝑁))
107104, 105, 106mp3an13 1455 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (2↑𝑁))
108 1red 10093 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
109108, 7posdifd 10652 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 < (2↑𝑁) ↔ 0 < ((2↑𝑁) − 1)))
110107, 109mpbid 222 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < ((2↑𝑁) − 1))
111108renegcld 10495 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → -1 ∈ ℝ)
112 0red 10079 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1137, 108resubcld 10496 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℝ)
114 lttr 10152 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ ((2↑𝑁) − 1) ∈ ℝ) → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
115111, 112, 113, 114syl3anc 1366 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
116110, 115mpan2d 710 . . . . . . . . . 10 (𝑁 ∈ ℕ → (-1 < 0 → -1 < ((2↑𝑁) − 1)))
117103, 116mpi 20 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 < ((2↑𝑁) − 1))
1181173ad2ant3 1104 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 < ((2↑𝑁) − 1))
119102, 118eqbrtrd 4707 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1))
1202, 10modcld 12714 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℝ)
121 ltsubadd2b 42631 . . . . . . . 8 (((1 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ) ∧ ((𝐴 mod (2↑𝑁)) ∈ ℝ ∧ ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
12218, 8, 120, 16, 121syl22anc 1367 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
123119, 122mpbid 222 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
124 modid0 12736 . . . . . . . . . . . 12 ((2↑𝑁) ∈ ℝ+ → ((2↑𝑁) mod (2↑𝑁)) = 0)
12510, 124syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) mod (2↑𝑁)) = 0)
126125oveq2d 6706 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) − 0))
127120recnd 10106 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
128127subid1d 10419 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − 0) = (𝐴 mod (2↑𝑁)))
129126, 128eqtrd 2685 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = (𝐴 mod (2↑𝑁)))
130129oveq1d 6705 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)))
131 modsubmodmod 12769 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
1322, 8, 10, 131syl3anc 1366 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
133 modabs2 12744 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
1342, 10, 133syl2anc 694 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
135130, 132, 1343eqtr3d 2693 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
136135oveq2d 6706 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
137123, 136breqtrrd 4713 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))))
13819, 20, 2, 137ltsub2dd 10678 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))) < (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
139313ad2ant1 1102 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1408recnd 10106 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
14111recnd 10106 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℂ)
142139, 140, 141subsub4d 10461 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))))
143 1cnd 10094 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
14416recnd 10106 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℂ)
145139, 143, 144subsub4d 10461 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) = (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
146138, 142, 1453brtr4d 4717 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) < ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))))
14712, 17, 10, 146ltdiv1dd 11967 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)) < (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
1487recnd 10106 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
1491483ad2ant3 1104 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
15067a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
15179, 150, 5expne0d 13054 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ≠ 0)
1521513ad2ant3 1104 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ≠ 0)
153 divsub1dir 42632 . . . . 5 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → ((𝐴 / (2↑𝑁)) − 1) = ((𝐴 − (2↑𝑁)) / (2↑𝑁)))
154153fveq2d 6233 . . . 4 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
155139, 149, 152, 154syl3anc 1366 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
156 fldivmod 42638 . . . 4 (((𝐴 − (2↑𝑁)) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
1579, 10, 156syl2anc 694 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
158155, 157eqtrd 2685 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
159 fldivmod 42638 . . 3 (((𝐴 − 1) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
16015, 10, 159syl2anc 694 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
161147, 158, 1603brtr4d 4717 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  +crp 11870  cfl 12631   mod cmo 12708  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901
This theorem is referenced by:  dignn0flhalflem2  42735
  Copyright terms: Public domain W3C validator