Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0ehalf Structured version   Visualization version   GIF version

Theorem dignn0ehalf 42921
 Description: The digits of the half of an even nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 3-Jun-2010.)
Assertion
Ref Expression
dignn0ehalf (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))

Proof of Theorem dignn0ehalf
StepHypRef Expression
1 nn0cn 11494 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
213ad2ant2 1129 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ ℂ)
3 2cnne0 11434 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
43a1i 11 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 ∈ ℂ ∧ 2 ≠ 0))
5 2nn0 11501 . . . . . . . . . . 11 2 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → 2 ∈ ℕ0)
7 id 22 . . . . . . . . . 10 (𝐼 ∈ ℕ0𝐼 ∈ ℕ0)
86, 7nn0expcld 13225 . . . . . . . . 9 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℕ0)
98nn0cnd 11545 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ∈ ℂ)
10 2cnd 11285 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ∈ ℂ)
11 2ne0 11305 . . . . . . . . . 10 2 ≠ 0
1211a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ0 → 2 ≠ 0)
13 nn0z 11592 . . . . . . . . 9 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
1410, 12, 13expne0d 13208 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2↑𝐼) ≠ 0)
159, 14jca 555 . . . . . . 7 (𝐼 ∈ ℕ0 → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
16153ad2ant3 1130 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0))
17 divdiv1 10928 . . . . . 6 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝐼) ∈ ℂ ∧ (2↑𝐼) ≠ 0)) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
182, 4, 16, 17syl3anc 1477 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝐼)) = (𝐴 / (2 · (2↑𝐼))))
1910, 9mulcomd 10253 . . . . . . . 8 (𝐼 ∈ ℕ0 → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
20193ad2ant3 1130 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = ((2↑𝐼) · 2))
21 2cnd 11285 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℂ)
22 simp3 1133 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
2321, 22expp1d 13203 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2↑(𝐼 + 1)) = ((2↑𝐼) · 2))
2420, 23eqtr4d 2797 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (2 · (2↑𝐼)) = (2↑(𝐼 + 1)))
2524oveq2d 6829 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2 · (2↑𝐼))) = (𝐴 / (2↑(𝐼 + 1))))
2618, 25eqtr2d 2795 . . . 4 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / (2↑(𝐼 + 1))) = ((𝐴 / 2) / (2↑𝐼)))
2726fveq2d 6356 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝐼))))
2827oveq1d 6828 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
29 2nn 11377 . . . 4 2 ∈ ℕ
3029a1i 11 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 2 ∈ ℕ)
31 peano2nn0 11525 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
32313ad2ant3 1130 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
33 nn0rp0 12472 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
34333ad2ant2 1129 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
35 nn0digval 42904 . . 3 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3630, 32, 34, 35syl3anc 1477 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
37 nn0rp0 12472 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ (0[,)+∞))
38373ad2ant1 1128 . . 3 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐴 / 2) ∈ (0[,)+∞))
39 nn0digval 42904 . . 3 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (𝐴 / 2) ∈ (0[,)+∞)) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4030, 22, 38, 39syl3anc 1477 . 2 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = ((⌊‘((𝐴 / 2) / (2↑𝐼))) mod 2))
4128, 36, 403eqtr4d 2804 1 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263   / cdiv 10876  ℕcn 11212  2c2 11262  ℕ0cn0 11484  [,)cico 12370  ⌊cfl 12785   mod cmo 12862  ↑cexp 13054  digitcdig 42899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-ico 12374  df-seq 12996  df-exp 13055  df-dig 42900 This theorem is referenced by:  dignn0flhalf  42922  nn0sumshdiglemA  42923
 Copyright terms: Public domain W3C validator