Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digexp Structured version   Visualization version   GIF version

Theorem digexp 42726
Description: The 𝐾 th digit of a power to the base is either 1 or 0. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
digexp ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))

Proof of Theorem digexp
StepHypRef Expression
1 eluzelcn 11737 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℂ)
2 eluz2nn 11764 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ)
32nnne0d 11103 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 𝐵 ≠ 0)
41, 3jca 553 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
543ad2ant1 1102 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 nn0z 11438 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
7 nn0z 11438 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
86, 7anim12i 589 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
98ancomd 466 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
1093adant1 1099 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
11 expsub 12948 . . . . . 6 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
125, 10, 11syl2anc 694 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) = ((𝐵𝑁) / (𝐵𝐾)))
1312eqcomd 2657 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) / (𝐵𝐾)) = (𝐵↑(𝑁𝐾)))
1413fveq2d 6233 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘((𝐵𝑁) / (𝐵𝐾))) = (⌊‘(𝐵↑(𝑁𝐾))))
1514oveq1d 6705 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
1623ad2ant1 1102 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℕ)
17 simp2 1082 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℕ0)
18 eluzelre 11736 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ)
19 reexpcl 12917 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2018, 19sylan 487 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ ℝ)
2118adantr 480 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
22 simpr 476 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 11765 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℕ0)
2423nn0ge0d 11392 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → 0 ≤ 𝐵)
2524adantr 480 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐵)
2621, 22, 25expge0d 13066 . . . . . 6 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐵𝑁))
2720, 26jca 553 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
28273adant2 1100 . . . 4 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
29 elrege0 12316 . . . 4 ((𝐵𝑁) ∈ (0[,)+∞) ↔ ((𝐵𝑁) ∈ ℝ ∧ 0 ≤ (𝐵𝑁)))
3028, 29sylibr 224 . . 3 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵𝑁) ∈ (0[,)+∞))
31 nn0digval 42719 . . 3 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ (𝐵𝑁) ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
3216, 17, 30, 31syl3anc 1366 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = ((⌊‘((𝐵𝑁) / (𝐵𝐾))) mod 𝐵))
33 simpr 476 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝐾 = 𝑁)
3433eqcomd 2657 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 𝑁 = 𝐾)
35 nn0cn 11340 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
36353ad2ant3 1104 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
37 nn0cn 11340 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
38373ad2ant2 1103 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℂ)
3936, 38subeq0ad 10440 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4039adantr 480 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((𝑁𝐾) = 0 ↔ 𝑁 = 𝐾))
4134, 40mpbird 247 . . . . . . . . 9 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝑁𝐾) = 0)
4241oveq2d 6706 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = (𝐵↑0))
431exp0d 13042 . . . . . . . . . 10 (𝐵 ∈ (ℤ‘2) → (𝐵↑0) = 1)
44433ad2ant1 1102 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑0) = 1)
4544adantr 480 . . . . . . . 8 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑0) = 1)
4642, 45eqtrd 2685 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (𝐵↑(𝑁𝐾)) = 1)
4746fveq2d 6233 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = (⌊‘1))
48 1zzd 11446 . . . . . . 7 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 ∈ ℤ)
49 flid 12649 . . . . . . 7 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49syl 17 . . . . . 6 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘1) = 1)
5147, 50eqtrd 2685 . . . . 5 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (⌊‘(𝐵↑(𝑁𝐾))) = 1)
5251oveq1d 6705 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (1 mod 𝐵))
53 eluz2gt1 11798 . . . . . . 7 (𝐵 ∈ (ℤ‘2) → 1 < 𝐵)
54 1mod 12742 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 mod 𝐵) = 1)
5518, 53, 54syl2anc 694 . . . . . 6 (𝐵 ∈ (ℤ‘2) → (1 mod 𝐵) = 1)
56553ad2ant1 1102 . . . . 5 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (1 mod 𝐵) = 1)
5756adantr 480 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → (1 mod 𝐵) = 1)
5852, 57eqtr2d 2686 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾 = 𝑁) → 1 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
59 simprl1 1126 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ (ℤ‘2))
607adantl 481 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
616adantr 480 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℤ)
6260, 61zsubcld 11525 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
63623adant1 1099 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
6463ad2antrl 764 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℤ)
65 nn0re 11339 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
66653ad2ant3 1104 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
67 nn0re 11339 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
68673ad2ant2 1103 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐾 ∈ ℝ)
6966, 68sublt0d 10691 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝐾) < 0 ↔ 𝑁 < 𝐾))
7069biimprd 238 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7170adantr 480 . . . . . . . . . 10 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (𝑁 < 𝐾 → (𝑁𝐾) < 0))
7271impcom 445 . . . . . . . . 9 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) < 0)
73 expnegico01 42633 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ (𝑁𝐾) ∈ ℤ ∧ (𝑁𝐾) < 0) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
7459, 64, 72, 73syl3anc 1366 . . . . . . . 8 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ (0[,)1))
75 ico01fl0 12660 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ (0[,)1) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7674, 75syl 17 . . . . . . 7 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = 0)
7776oveq1d 6705 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = (0 mod 𝐵))
782nnrpd 11908 . . . . . . . . 9 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℝ+)
79 0mod 12741 . . . . . . . . 9 (𝐵 ∈ ℝ+ → (0 mod 𝐵) = 0)
8078, 79syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘2) → (0 mod 𝐵) = 0)
81803ad2ant1 1102 . . . . . . 7 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (0 mod 𝐵) = 0)
8281ad2antrl 764 . . . . . 6 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (0 mod 𝐵) = 0)
8377, 82eqtrd 2685 . . . . 5 ((𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
84 eluzelz 11735 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘2) → 𝐵 ∈ ℤ)
85843ad2ant1 1102 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
8685ad2antrl 764 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐵 ∈ ℤ)
8767, 65anim12i 589 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
88 lenlt 10154 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
8988bicomd 213 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁 < 𝐾𝐾𝑁))
9087, 89syl 17 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9190biimpd 219 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
92913adant1 1099 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 < 𝐾𝐾𝑁))
9392adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾𝑁))
9493impcom 445 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾𝑁)
95 3simpc 1080 . . . . . . . . . . . 12 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
9695ad2antrl 764 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
97 nn0sub 11381 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9896, 97syl 17 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
9994, 98mpbid 222 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ0)
100 zexpcl 12915 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
10186, 99, 100syl2anc 694 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑(𝑁𝐾)) ∈ ℤ)
102 flid 12649 . . . . . . . 8 ((𝐵↑(𝑁𝐾)) ∈ ℤ → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
103101, 102syl 17 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (⌊‘(𝐵↑(𝑁𝐾))) = (𝐵↑(𝑁𝐾)))
104103oveq1d 6705 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = ((𝐵↑(𝑁𝐾)) mod 𝐵))
10513ad2ant1 1102 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
10633ad2ant1 1102 . . . . . . . . . . 11 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ≠ 0)
107105, 106, 63expm1d 13058 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) = ((𝐵↑(𝑁𝐾)) / 𝐵))
108107eqcomd 2657 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
109108ad2antrl 764 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) = (𝐵↑((𝑁𝐾) − 1)))
110 pm4.56 515 . . . . . . . . . . . . . 14 ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾))
111873adant1 1099 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
112 axlttri 10147 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
113111, 112syl 17 . . . . . . . . . . . . . . 15 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 < 𝑁 ↔ ¬ (𝐾 = 𝑁𝑁 < 𝐾)))
114113biimprd 238 . . . . . . . . . . . . . 14 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ (𝐾 = 𝑁𝑁 < 𝐾) → 𝐾 < 𝑁))
115110, 114syl5bi 232 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝐾 = 𝑁 ∧ ¬ 𝑁 < 𝐾) → 𝐾 < 𝑁))
116115expdimp 452 . . . . . . . . . . . 12 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → (¬ 𝑁 < 𝐾𝐾 < 𝑁))
117116impcom 445 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → 𝐾 < 𝑁)
11883adant1 1099 . . . . . . . . . . . . 13 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
119118ad2antrl 764 . . . . . . . . . . . 12 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
120 znnsub 11461 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
121119, 120syl 17 . . . . . . . . . . 11 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
122117, 121mpbid 222 . . . . . . . . . 10 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝑁𝐾) ∈ ℕ)
123 nnm1nn0 11372 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ → ((𝑁𝐾) − 1) ∈ ℕ0)
124122, 123syl 17 . . . . . . . . 9 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝑁𝐾) − 1) ∈ ℕ0)
125 zexpcl 12915 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ ((𝑁𝐾) − 1) ∈ ℕ0) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
12686, 124, 125syl2anc 694 . . . . . . . 8 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (𝐵↑((𝑁𝐾) − 1)) ∈ ℤ)
127109, 126eqeltrd 2730 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ)
128183ad2ant1 1102 . . . . . . . . . 10 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ)
129128, 106, 63reexpclzd 13074 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐵↑(𝑁𝐾)) ∈ ℝ)
130783ad2ant1 1102 . . . . . . . . 9 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐵 ∈ ℝ+)
131 mod0 12715 . . . . . . . . 9 (((𝐵↑(𝑁𝐾)) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
132129, 130, 131syl2anc 694 . . . . . . . 8 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
133132ad2antrl 764 . . . . . . 7 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → (((𝐵↑(𝑁𝐾)) mod 𝐵) = 0 ↔ ((𝐵↑(𝑁𝐾)) / 𝐵) ∈ ℤ))
134127, 133mpbird 247 . . . . . 6 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((𝐵↑(𝑁𝐾)) mod 𝐵) = 0)
135104, 134eqtrd 2685 . . . . 5 ((¬ 𝑁 < 𝐾 ∧ ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁)) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
13683, 135pm2.61ian 848 . . . 4 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵) = 0)
137136eqcomd 2657 . . 3 (((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ ¬ 𝐾 = 𝑁) → 0 = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13858, 137ifeqda 4154 . 2 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → if(𝐾 = 𝑁, 1, 0) = ((⌊‘(𝐵↑(𝑁𝐾))) mod 𝐵))
13915, 32, 1383eqtr4d 2695 1 ((𝐵 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾(digit‘𝐵)(𝐵𝑁)) = if(𝐾 = 𝑁, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  +∞cpnf 10109   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  [,)cico 12215  cfl 12631   mod cmo 12708  cexp 12900  digitcdig 42714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-dig 42715
This theorem is referenced by:  dig1  42727
  Copyright terms: Public domain W3C validator