![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difuncomp | Structured version Visualization version GIF version |
Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
difuncomp | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3948 | . . . 4 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
2 | sseqin2 3960 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∩ 𝐴) = 𝐴) | |
3 | 2 | biimpi 206 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∩ 𝐴) = 𝐴) |
4 | 1, 3 | syl5reqr 2809 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 = (𝐴 ∩ 𝐶)) |
5 | 4 | difeq1d 3870 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
6 | difundi 4022 | . . . 4 ⊢ (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) | |
7 | dfss4 4001 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
8 | 7 | biimpi 206 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
9 | 8 | ineq1d 3956 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ∩ (𝐶 ∖ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
10 | 6, 9 | syl5eq 2806 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = (𝐴 ∩ (𝐶 ∖ 𝐵))) |
11 | indif2 4013 | . . 3 ⊢ (𝐴 ∩ (𝐶 ∖ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵) | |
12 | 10, 11 | syl6eq 2810 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵)) = ((𝐴 ∩ 𝐶) ∖ 𝐵)) |
13 | 5, 12 | eqtr4d 2797 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = (𝐶 ∖ ((𝐶 ∖ 𝐴) ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∖ cdif 3712 ∪ cun 3713 ∩ cin 3714 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 |
This theorem is referenced by: ldgenpisyslem1 30556 |
Copyright terms: Public domain | W3C validator |